Empirical Methods for Policy Evaluation Second Part

Matteo Bobba

Toulouse School of Economics (TSE)

TSE PhD Program (MRes) Fall 2024

<ロト <回ト < 注ト < 注ト = 注

Outline and Readings for this Section (3 Classes)

- Difference-in-Differences
 - Two-way fixed effect regressions (de Chaisemartin-D'Hautfœuille Book/Survey paper)
 - Heterogeneity-robust DID estimators (dCDH, Book/Survey paper)
- DID and empirical job search models
 - Bobba, Flabbi and Levy (IER, 2022)

< ロ > < 同 > < 回 > < 回 >

Two-way fixed effect regressions

Matteo Bobba (TSE)

Empirical Methods for Policy Evaluation (Part 2)

TSE MRes, Fall 2024 3 / 76

Groups and Time Periods

- \bullet We consider observations that can be divided into G groups and T periods
- For every $(g,t) \in \{1,...,G\} \times \{1,...,T\}$: = nb of obs in group g at period t
- Panel/repeated cross-section data set where groups are, e.g., individuals, firms, counties, etc.
- Cross-section data set where cohort of birth plays the role of time
- One may have $N_{g,t} = 1$, e.g. b/c group=individual or a firm
- For simplicity, we assume hereafter balanced panel of groups: For all $(q, t) \in \{1, ..., G\} \times \{1, ..., T\}, N_{q,t} > 0$

Treatment and Design

- $D_{g,t}$: treatment of group g and at period t
- $D_{g,t}$ may be non-binary and multivariate
- In some case the treatment may vary across individuals within a group: "fuzzy designs", not considered here
- When $D_{g,t} \in \mathbb{R}^+$ increases only once, constant otherwise: "staggered adoption design".

< ロ > < 同 > < 回 > < 回 >

Potential Outcomes, SUTVA, and Covariates

- Let $(d_1,...,d_T)$ denote a treatment trajectory
- Corresponding potential outcomes: $Y_{g,t}(d_1,...,d_T)$
- Then observed outcome: $Y_{g,t} = Y_{g,t}(D_{g,1},...,D_{g,T})$
- We maintain the usual SUTVA assumption:

 $(Y_{g,1}(d_1,...,d_T),...,Y_{g,T}(d_1,...,d_T))\amalg(D_{g',t'})_{g'\neq g,t'=1,...,T}, \forall (g,t,d_1,...,d_T)$

• For any variable $X_{g,t}$, let $X_g = (X_{g,1},...,X_{g,T})$ and $X = (X_1,...,X_G)$.

The Pervasiveness of Two-way Fixed Effect Regressions

• Researchers often consider two-way fixed effects (TWFE) models of the kind:

$$Y_{g,t} = \alpha_g + \gamma_t + \beta_{fe} D_{g,t} + \epsilon_{g,t}.$$

- E.g.: employment in county g and year t regressed on county FEs, year FEs, and minimum wage in county g year t
- 26 out of the 100 most cited 2015-2019 AER papers estimate TWFE
- Also commonly used in other social sciences
- Other popular method: event-study regressions=dynamic version of TWFE

In the Simplest Set-up, $\mathsf{TWFE} = \mathsf{DID}$

- $D_{g,t}$ binary, two groups & time periods
- $Y_{g,t}$ is the outcome in location $g \in \{s,n\}$ at period $t = \{1,2\}$
- $Y_{g,t}(0), Y_{g,t}(1)$ are the counterfactual outcomes without and with treatment
 - $\bullet\,$ E.g., $Y_{g,t}(0)$ is the employment in location g at t with a low minimum wage
 - $Y_{g,t}(1)$ is the employment in location g at t with a high minimum wage
- $\beta_{fe} := Y_{s,2} Y_{s,1} (Y_{n,2} Y_{n,1})$
- The before-after diff is combined with the treated-control diff

The Parallel (//) Trend Assumption

• In the absence of treatment, same average outcome evolution across groups

$$\mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] = \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)]$$

• Weaker than imposing that s and n have same untreated-outcome levels

$$\mathbb{E}[Y_{s,t}(0)] = \mathbb{E}[Y_{n,t}(0)]$$
 for all t

• Also weaker than imposing no variation in average untreated outcomes

$$\mathbb{E}[Y_{g,2}(0)] = \mathbb{E}[Y_{g,1}(0)]$$
 for all g

• Appeal of // trends: has testable implications (no pre-trends)

In General, TWFE \neq DID

• Under // trends, DID is unbiased for the ATE in location s at period 2

$$\begin{split} \mathbb{E}(DID) &= \mathbb{E}[Y_{s,2} - Y_{s,1} - (Y_{n,2} - Y_{n,1})] \\ &= \mathbb{E}[Y_{s,2}(1) - Y_{s,1}(0) - (Y_{n,2}(0) - Y_{n,1}(0))] \\ &= \mathbb{E}[Y_{s,2}(1) - Y_{s,2}(0)] + \mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] - \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)] \\ &= \mathbb{E}[Y_{s,2}(1) - Y_{s,2}(0)] \end{split}$$

- Under // trends, TWFE does not identify the ATE parameter
- It also requires constant TE, which is often implausible
 - E.g., effect of minimum wage on employment likely differ across counties

< □ > < □ > < □ > < □ > < □ >

Additive Separability of TWFE

• Static Case with a Single *D*:

 $D_{g,t} \in R^+$ and for all $(g, t, d_1, ..., d_T), Y_{g,t}(d_1, ..., d_T) = Y_{g,t}(d_t)$

- Parallel trends: for all $t \ge 2$, $E[Y_{g,t}(0) Y_{g,t-1}(0)] = \gamma_t$
- It follows that: $E[Y_{g,t}(0) Y_{g,1}(0)] = \gamma_t$, and let $\alpha_g = E[Y_{g,1}(0)]$. Then,

$$E[Y_{g,t}(0)] = E[Y_{g,1}(0)] + E[Y_{g,t}(0) - Y_{g,1}(0)] = \alpha_g + \gamma_t$$

Parameter of Interest

Average treatment response

$$\Delta^{TR} = \frac{1}{\sum_{g,t} D_{g,t}} \sum_{g,t} \left(Y_{g,t}(D_{g,t}) - Y_{g,t}(0) \right)$$

• Then, let $\delta^{TR} = E[\Delta^{TR}]$. With a binary D, $\delta^{TR} = \text{ATT}$

• Analogously, in (g, t):

$$\Delta_{g,t} = \frac{1}{D_{g,t}} \left[Y_{g,t}(D_{g,t}) - Y_{g,t}(0) \right] \text{ if } D_{g,t} \neq 0$$

• Then:

$$\delta^{TR} = E\left[\sum_{(g,t):D_{g,t}>0} W_{g,t}\Delta_{g,t}\right], \quad \text{with } W_{g,t} = \frac{D_{g,t}}{\sum_{(g,t):D_{g,t}>0} D_{g,t}}$$

TWFE Regression(s)

- $\hat{\beta}_{fe}$ = OLS coeff. of $D_{g,t}$ in a reg. of $Y_{g,t}$ on group FEs, time FEs and $D_{g,t}$
- We then let $\beta_{fe} = E[\widehat{\beta}_{fe}]$
- Other popular estimator: $\hat{\beta}_{fd}$ = OLS coeff. of $D_{g,t} D_{g,t-1}$ in a regression of $Y_{g,t} Y_{g,t-1}$ on time FEs and $D_{g,t} D_{g,t-1}$
- We then let $\beta_{fd} = E[\widehat{\beta}_{fd}]$
- Oftentimes, we also include covariates $X_{g,t}$ in the regression. Let $\widehat{\beta}_{fe}^X$ denote the coeff. of $D_{g,t}$ in such a regression and $\beta_{fe}^X = E[\widehat{\beta}_{fe}^X]$
- We first focus on β_{fe} , but we will extend the results to β_{fd} and β_{fe}^X

< ロ > < 同 > < 回 > < 回 >

$\beta_{fe} =$ weighted sum of ATEs under // trends

• de Chaisemartin-D'Hautfœuille (AER, 2020) show that:

$$\beta_{fe} = E\left[\sum_{(g,t):D_{g,t}>0} W_{fe,g,t}\Delta_{g,t}\right]$$

•
$$W_{fe,g,t} = \frac{D_{g,t}\epsilon_{fe,g,t}}{\sum_{(g,t):D_{g,t}>0} D_{g,t}\epsilon_{fe,g,t}}$$

• $\epsilon_{fe,g,t}$ = residual of the reg. of $D_{g,t}$ on a constant, group FEs, and time FEs

- In general, $\beta_{fe} \neq \delta^{TR}$ because $W_{fe,g,t} \neq W_{g,t}$
- We may have $W_{fe,g,t} < 0$: if $\epsilon_{fe,g,t} < 0$ while $D_{g,t} > 0$
- Then, $\widehat{\beta}_{fe}$ does not satisfy "no-sign-reversal": $E\left[\widehat{\beta}_{fe}\right]$ may be, say, < 0 even if $Y_{g,t}(d) > Y_{g,t}(0)$ for all (g,t) and d > 0

< ロ > < 同 > < 回 > < 回 >

What is Special about DID?

• In standard DIDs, $D_{g,t} = I_g 1\{t \ge t_0\}$ with $I_g = 1\{g \text{ belongs to treated groups}\}$

$$D_{g,t}\epsilon_{g,t} = D_{g,t}(I_g - \overline{I})(1\{t \ge t_0\} - (1 - (t_0 - 1)/T))$$
$$= D_{g,t}(1 - \overline{I})(1 - (1 - (t_0 - 1)/T))$$

 $\Rightarrow W_{fe,g,t} = W_{g,t} \text{ and } \beta_{fe} = \delta^{TR}$

• But does not hold with missing data/unequally sized groups

3

Characterizing (g,t) cells weighted negatively by β_{fe}

- Let $D_{g,.}$ =average treat. rate of g and $D_{.,t}$ =average treat. rate at t
- Under // trends, $W_{fe,g,t}$ is decreasing with $D_{g,.}$ and $D_{.,t}$

 $\Rightarrow \beta_{fe}$ more likely to assign negative weight to periods where a large fraction of observations treated, and to groups treated for many periods

- In staggered adoption designs $(D_{g,t} \ge D_{g,t-1})$, $W_{fe,g,t} < 0$ more likely in the last periods and for groups adopting the treatment earlier
 - $\Rightarrow\,$ We can remove negative weights by removing always treated groups and/or the last periods

Forbidden Comparison 1: $\widehat{\beta}_{fe}$ may Compare Switchers to Always Treated

- When D binary and design staggered, Goodman-Bacon (JoE, 2021) show that $\hat{\beta}_{fe}$ = weighted avg of two types of DIDs:
 - DID_1 , comparing group s switching from untreated to treated to group n untreated at both dates
 - DID_2 , comparing switching group s to group a treated at both dates.
- Negative weights in β_{fe} originate from the second type of DIDs

< □ > < □ > < □ > < □ > < □ >

Forbidden Comparison 1: An Example

• Example: group e treated at t = 2, group ℓ treated at t = 3. Then:

$$\widehat{\beta}_{fe} = \frac{1}{2} \times \underbrace{DID_{e-\ell}^{1-2}}_{DID_1} + \frac{1}{2} \times \underbrace{DID_{\ell-e}^{2-3}}_{DID_2}$$

• At periods 2 and 3, e's outcome = treated potential outcome, so

$$Y_{e,3} - Y_{e,2} = Y_{e,3}(1) - Y_{e,2}(1) = Y_{e,3}(0) + \Delta_{e,3} - (Y_{e,2}(0) + \Delta_{e,2}).$$

 \bullet On the other hand, group ℓ only treated at period 3, so

$$Y_{\ell,3} - Y_{\ell,2} = Y_{\ell,3}(0) + \Delta_{\ell,3} - Y_{\ell,2}(0)$$

Two-way fixed effect regressions

Forbidden Comparison 1: An Example (continued)

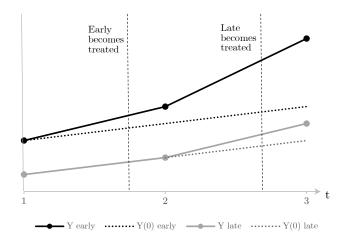
- $E\left[DID_{\ell-e}^{2-3}\right] = E\left[Y_{\ell,3} Y_{\ell,2} (Y_{e,3} Y_{e,2})\right] = E\left[\Delta_{\ell,3} + \Delta_{e,2} \Delta_{e,3}\right]$ so $\Delta_{e,3}$ enters with negative weight in β_{fe}
- Note: if $\Delta_{e,2} = \Delta_{e,3}$, $E[DID_{\ell-e}^{2-3}] = E[\Delta_{\ell,3}]$
- More generally, if $\Delta_{g,t} = \Delta_{g,t'}$, $W_{fe,g,t} \ge 0$. But restrictive!

Note:

$$Y_{g,t}(0) - Y_{g,t-1}(0) = Y_{g,t}(1) - Y_{g,t-1}(1) \Longleftrightarrow \Delta_{g,t} = \Delta_{g,t-1}(1)$$

• Seemingly mild assumption (trends on $Y_{g,t}(0)$ and $Y_{g,t}(1)$ are the same) is actually equivalent to time-invariant effects!

Forbidden Comparison 1: Graphical Illustration



Forbidden Comparison 2: Comparing "Switching More" to "Switching Less"

- Suppose the treatment D is not binary
- Then, $\hat{\beta}_{fe}$ may leverage DIDs comparing group m whose D increases more to group ℓ whose D increases less
- In fact, with two groups m and ℓ and two periods,

$$\widehat{\beta}_{fe} = \frac{Y_{m,2} - Y_{m,1} - (Y_{\ell,2} - Y_{\ell,1})}{D_{m,2} - D_{m,1} - (D_{\ell,2} - D_{\ell,1})}$$

• de Chaisemartin-D'Hautfœuille (ReStud, 2018) show that this "Wald-DID" estimator may not estimate convex combination effects, even if TE constant over time

Forbidden Comparison 2: An Example

- \bullet Assume m goes from 0 to 2 units of treatment while ℓ goes from 0 to 1
- $\Rightarrow\,$ Denominator of the Wald-DID is 2-0-(1-0)=1
 - Potential outcomes linear in treatment:

$$Y_{m,t}(d) = Y_{m,t}(0) + \delta_m d$$
$$Y_{\ell,t}(d) = Y_{m,t}(0) + \delta_\ell d,$$

• Then, under // trends:

$$E\left[\widehat{\beta}_{fe}\right] = E\left[Y_{m,2} - Y_{m,1} - (Y_{\ell,2} - Y_{\ell,1})\right]$$

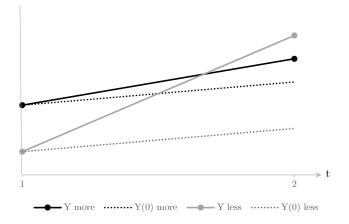
= $E\left[Y_{m,2}(0) + 2\delta_m - Y_{m,1}(0) - (Y_{\ell,2}(0) + \delta_\ell - Y_{\ell,1}(0))\right]$
= $E\left[Y_{m,2}(0) - Y_{m,1}(0)\right] - E\left[Y_{\ell,2}(0) - Y_{\ell,1}(0)\right] + 2\delta_m - \delta_\ell$
= $2\delta_m - \delta_\ell$

TSE MRes, Fall 2024 22 / 76

3

I wo-way fixed effect regressions

Forbidden Comparison 2: Graphical Illustration



< □ > < □ > < □ > < □ > < □ >

Extensions

- dCDH (2020) extends to β_{fd} , but with different weights $W_{fd,g,t}$
- $\Rightarrow~{\rm If}~\beta_{fd}\neq\beta_{fe},$ we reject homogeneous TE under // trends
 - $\bullet\,$ With covariates, we modify the // trends by assuming that for some $\lambda,$

$$E[Y_{g,t}(0) - Y_{g,t-1}(0) - (X_{g,t} - X_{g,t-1})'\lambda | \boldsymbol{D}_g, \boldsymbol{X}_g]$$

=
$$E[Y_{g,t}(0) - Y_{g,t-1}(0) - (X_{g,t} - X_{g,t-1})'\lambda],$$

which does not depend on g.

- Let $\epsilon_{fe,g,t}^X$ = residual of the reg. of $D_{g,t}$ on a constant, group FEs, time FEs and $X_{g,t}$.
- Then, same result as above but with $\epsilon_{fe,g,t}^X$ instead of $\epsilon_{fe,g,t}$ in $W_{fe,g,t}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Software Implementations

- bacondecomp Stata and R packages compute the DIDs and their corresponding weights entering in $\widehat{\beta}_{fe}$
- The twowayfeweights Stata and R commands compute the weights $W_{fe,g,t}$ and $W_{fd,g,t}$, possibly with covariates
 - $\bullet\,$ Worst-case scenario of std dev on $\Delta_{g,t}$ where the weights are maximally correlated with TEs
 - ${\ensuremath{\, \bullet \,}}$ Correlation between weights and proxies of $\Delta_{g,t}$

イロン イロン イヨン イヨン

Example: What is the Effect of Newspapers on Electoral Turnout?

- Gentzkow et al. (AER, 2011) use US data on presidential elections
- They regress change in turnout from t-1 to t in county g on change in # newspapers and state-year FE
- One could also estimate the FE regression

	\widehat{eta}	$\% \mbox{ of } < 0$	$Sum \ of < 0$
Regression	(s.e.)	weights	weights
\widehat{eta}_{fe}	-0.0011 (0.0011)	40.1%	-0.53
\widehat{eta}_{fd}	$\underset{(0.0009)}{0.0026}$	45.7%	-1.43

 \Rightarrow Under // trends, we reject the null hypothesis that $\Delta_{g,t} = \Delta \; orall (g,t)$

< ロ > < 同 > < 回 > < 回 >

Example: Robustness measures in Gentzkow et al. (AER, 2011)

Reg.	\widehat{eta}	$\hat{\sigma}$	ŝ
$\widehat{\beta}_{fe}$	-0.0011	$3 imes 10^{-4}$	$7 imes 10^{-4}$
$egin{array}{c} eta_{fe} \ \widehat{eta}_{fd} \end{array}$	0.0026	4×10^{-4}	6×10^{-4}

- A std dev of 4×10^{-4} on $\Delta_{g,t}$ sufficient to rationalize $\delta^{TR} < 0$
- A std dev of 6×10^{-4} on $\Delta_{g,t}$ sufficient to rationalize $E[\Delta_{g,t}|\mathbf{D}] < 0 \; \forall (g,t)$
- Weights attached to $\hat{\beta}_{fd}$ negatively correlated (corr=-0.06, t-stat=-3.28) with the election year
- $\Rightarrow \widehat{eta}_{fd}$ biased if treatment effect changes over time

< ロ > < 同 > < 回 > < 回 >

Heterogeneity-robust DID estimators

Robust DIDs

- Avoid making the forbidden comparisons leveraged by TWFE:
 - Never compare switcher to switcher: only compare switcher to stayer
 - Never compare a switcher to a stayer with a different baseline treatment (e.g.: group going from untreated to treated compared to always treated)
- The comparisons we use depend on whether we allow for dynamic effects
 - Is it plausible that groups' outcome at t only depends on treatment at t?
- If so, we can consider each pair of consecutive time periods independently, and compare t-1 to t outcome trends of:
 - t-1 to t switchers: groups whose treatment changes from t-1 to t
 - t-1 to t stayers: groups whose treatment does not change from t-1 to t, with same t-1 treatment as switchers

э

Robust DIDs

- $\bullet\,$ If not, we need to control for groups' full treatment history, and compare t-1 to $t+\ell$ outcome trends of
 - t-1 to t first-time switchers: groups whose treatment changes for the first time from t-1 to t
 - 1 to $t + \ell$ stayers: groups whose treatment does not change from period 1 to $t + \ell$, with same t 1 treatment as switchers
- ⇒ Allowing for dynamic effects is appealing (not covered here), but may lead to less precise and interpretable effects, especially in complicated designs

Parameters of interest

- Suppose first that D is binary
- Let us define

$$\mathcal{S} = \{(g,t) : t \ge 2, \ D_{g,t} \neq D_{g,t-1}, \ \exists g' : \ D_{g',t} = D_{g',t-1} = D_{g,t-1}\}$$

 $\mathcal{S}{=}\;t-1\text{-to-}t$ switchers that can be matched with a t-1-to-t stayer with the same t-1 treatment

- $N_S = \operatorname{card}(\mathcal{S})$
- Then, ATE across "matchable switchers" is

$$\delta^{S} = E\left[\frac{1}{N_{S}}\sum_{(g,t)\in\mathcal{S}}Y_{g,t}(1) - Y_{g,t}(0)\right]$$

Assumptions for identifying δ^S

• δ^S can be unbiasedly estimated under the following // trends conditions:

•
$$E[Y_{g,t}(0) - Y_{g,t-1}(0)|\mathbf{D}_g] = E[Y_{g,t}(0) - Y_{g,t-1}(0)] = \gamma_{0,t}$$

• $E[Y_{g,t}(1) - Y_{q,t-1}(1)|\mathbf{D}_g] = E[Y_{q,t}(1) - Y_{q,t-1}(1)] = \gamma_{1,t}$

- Usual // trends on $Y_{q,t}(0)$ sufficient if we focus on "switchers in":

$$S_+ = \{(g,t) : t \ge 2, D_{g,t} = 1 > D_{g,t-1} = 0, \exists g' : D_{g',t} = D_{g',t-1} = 0\}$$

• Weaker exogeneity assumption sufficient to consistently estimate δ^S :

$$E[Y_{g,t}(0) - Y_{g,t-1}(0)|D_{g,1}, ..., D_{g,t}] = E[Y_{g,t}(0) - Y_{g,t-1}(0)]$$

 \Rightarrow Allows for possibility that $Y_{q,t}(0) - Y_{q,t-1}(0)$ affects $D_{q,t+1}$ etc.

1

4

A D > A B > A B > A B >

Weighted averages of DIDs identify δ^S

• For all
$$t \in \{1, ..., T\}$$
 and $d = 0, 1$, let

•
$$N_{+,t} = \mathsf{card} \{ g : D_{g,t} > D_{g,t-1} \}$$

•
$$N_{-,t} = \mathsf{card} \{ g : D_{g,t} < D_{g,t-1} \}$$

•
$$N_{=d,t} = \mathsf{card} \{ g : D_{g,t} = D_{g,t-1} = d \}$$

And let

$$DID_{+,t} = \sum_{g:D_{g,t} > D_{g,t-1}} \frac{1}{N_{+,t}} \left(Y_{g,t} - Y_{g,t-1} \right) - \sum_{g:D_{g,t} = D_{g,t-1} = 0} \frac{1}{N_{=0,t}} \left(Y_{g,t} - Y_{g,t-1} \right)$$
$$DID_{-,t} = \sum_{g:D_{g,t} = D_{g,t-1} = 1} \frac{1}{N_{=1,t}} \left(Y_{g,t} - Y_{g,t-1} \right) - \sum_{g:D_{g,t} < D_{g,t-1}} \frac{1}{N_{-,t}} \left(Y_{g,t} - Y_{g,t-1} \right)$$

• Then (dCDH, 2020)

$$E[DIDM] = E\left[\sum_{t=2}^{T} \frac{N_{+,t}}{N_S} DID_{+,t} + \frac{N_{-,t}}{N_S} DID_{-,t}\right] = \delta^S$$

TSE MRes, Fall 2024 33 / 76

э

< □ > < □ > < □ > < □ > < □ >

Intuition for DIDM

- $DID_{+,t}$ compares evolution of Y between groups becoming treated between t-1 and t, and groups that remain untreated
- $\bullet\,$ Under // trends on Y(0), it identifies TE in groups switching into treatment
- Similarly, under // trends on Y(1), $DID_{-,t}$ identifies TE in groups switching out of treatment
- \bullet Finally, DIDM is a weighted average of those DID estimands

Placebo estimators

- Intuition: compare switchers' and stayers' outcome evolutions, one period before switchers switch
- Need to restrict attention to groups that are stayers one period before switchers switch
- We could also compare switchers' and stayers' outcome evolutions two, three periods etc. before switchers switch

Discrete Treatments

- If D ∈ D, consider DID_{d,d',t} ((d, d') ∈ D²), a DID comparing groups switching from d to d' from t − 1 to t, with groups staying at d
- Then DIDM = weighted average of those $DID_{d,d',t}$ s, scaled by switchers' average treatment change
- *DIDM* estimates an average outcome change produced by a one unit increase of treatment

Controlling for Time-varying Covariates

• Rationale: // trends only hold if we account for covariates' change:

$$E(Y_{g,t}(d) - Y_{g,t-1}(d) | \boldsymbol{D}_g, \boldsymbol{X}_g) = \gamma_{d,t} + (X_{g,t} - X_{g,t-1})' \lambda_d \quad \forall d \in \mathcal{D}$$

- Special case: $X_{g,t} = (1\{g=2\} \times t, ..., 1\{g=G\} \times t)'$: group-specific linear trends
- Let $\epsilon_{g,t}(d)$ residual of the reg. of $Y_{g,t} Y_{g,t-1}$ on period FEs and $X_{g,t} X_{g,t-1}$ for (g,t) s.t. $D_{g,t} = D_{g,t-1} = d \in \mathcal{D}$
- \bullet Then define $DIDM^X$ as DIDM , but using $\epsilon_{g,t}(D_{g,t-1})$ instead of $Y_{g,t}-Y_{g,t-1}$
- Separate reg. for each $d \in \mathcal{D}$, estimated in sample of d-stayers

イロト 不得 トイヨト イヨト 二日

Controlling for Time-invariant Covariates

• With discrete time-invariant covariate, we propose estimator relying on conditional parallel trends assumption:

$$E(Y_{g,t}(d) - Y_{g,t-1}(d) | \boldsymbol{D}_g, X_g = x) = \gamma_{d,t,x}$$

- $\bullet\,$ Groups with the same value of X_g experience parallel trends, but trends may differ across values of X_g
- E.g.: state-specific trends with county-level data

Software Implementation

- R and Stata command: did_multiplegt
- Options to relax the standard // trends
 - Control for time-varying, time-invariant covariates, or linear time trends
- Flexibly specifies the number of placebos to be estimated
- When D takes many values, with D_c coarser than D: match stayers to switchers if they share same baseline value of D_c rather than D
 - But then, DIDM assumes that for $d \neq d' : f(d) = f(d')$, trend affecting $Y_{g,t}(d)$ same as that affecting $Y_{g,t}(d')$, or equivalently that $Y_{g,t}(d) Y_{g,t}(d')$ constant over time

イロト イボト イヨト イヨト

Example (continued): Gentzkov et al. (AER, 2011)

Table: Estimates of the effect of one additional newspaper on turnout

	Estimate	Standard error	N
$\widehat{\beta}_{fd}$	0.0026	0.0009	15,627
$egin{array}{l} eta_{fd} \ \widehateta_{fe} \end{array}$	-0.0011	0.0011	16,872
DIDM	0.0043	0.0014	16,872
DIDM Placebo	-0.0009	0.0016	13,221

⇒ DIDM is 66% larger and significantly different from $\hat{\beta}_{fd}$ at the 10% level (t-stat=1.77) and has an opposite sign to $\hat{\beta}_{fe}$

Extension to Continuous Treatments (de Chaisemartin et al., 2024)

- *DIDM* compares outcome evolution of switchers and of stayers with the same baseline treatment
- Two challenges when extending this simple idea to continuous treatments:
 - There may not be stayers
 E.g., Deschênes and Greenstone (2007) use US-county level data and TWFE regs to estimate effect of temperatures on agricultural yields.
 No stayer: no US county experiences exact same temperatures in two consecutive years
 - Switchers cannot be matched to stayers with same baseline treatment
 E.g.: Fajgelbaum et al. (2020), impact of 2018-2019 "Trump tariffs".
 Only changed tariffs for minority of varieties, so many stayers.
 However, tariffs ≃ continuous, so many varieties targeted by Trump cannot be matched to non-targeted variety with same tariffs before 2018

Notation and // Trends

- $\bullet\,$ We drop the g subscript: what follows holds for any group in the sample
- Group observed at two periods (generalization to more periods easy)
- Let D_1 and D_2 denote group's treatments at periods 1 and 2
- For any $d \in \mathcal{D}_1 \cup \mathcal{D}_2$, let $Y_1(d)$ and $Y_2(d)$ denote group's potential outcomes at periods 1 and 2 with treatment d
- Let Y_1 and Y_2 denote observed outcomes
- Let $S = 1\{D_2 \neq D_1\}$ be indicator equal to 1 if the group's treatment changes from period one to two, i.e. if group is a switcher
- // trends with continuous treatment

 $\forall d_1 \in \mathcal{D}_1, \ E(Y_2(d_1) - Y_1(d_1) | D_1 = d_1, D_2) = E(Y_2(d_1) - Y_1(d_1) | D_1 = d_1)$

イロト 不得 トイヨト イヨト 二日

Building-block Identification Result

• Under // trends,

$$TE(d_1, d_2|d_1, d_2) := E\left(\frac{Y_2(d_2) - Y_2(d_1)}{d_2 - d_1} \mid D_1 = d_1, D_2 = d_2\right)$$
$$= E\left(\frac{\Delta Y_2 - E(\Delta Y|D_1 = d_1, S = 0)}{d_2 - d_1} \mid D_1 = d_1, D_2 = d_2\right)$$

• In a canonical DID design: $\mathcal{D}_1 = 0$ and $\mathcal{D}_2 \in \{0, 1\}$

 \Rightarrow $(d_1, d_2) = (0, 1)$ and so $TE(0, 1|0, 1) = \mathsf{ATT}$

3

< □ > < □ > < □ > < □ > < □ >

Building-block Identification Result: Proof

$$\begin{split} & E(Y_2(d_2) - Y_2(d_1) \mid D_1 = d_1, D_2 = d_2) \\ = & E(\Delta Y \mid D_1 = d_1, D_2 = d_2) - E(\Delta Y(d_1) \mid D_1 = d_1, D_2 = d_2) \\ = & E(\Delta Y \mid D_1 = d_1, D_2 = d_2) - E(\Delta Y(d_1) \mid D_1 = d_1, D_2 = d_1) \\ = & E(\Delta Y \mid D_1 = d_1, D_2 = d_2) - E(\Delta Y(d_1) \mid D_1 = d_1, S = 0) \\ = & E(\Delta Y - E(\Delta Y \mid D_1 = d_1, S = 0) \mid D_1 = d_1, D_2 = d_2) \end{split}$$

- ⇒ The counterfactual outcome evolution switchers would have experienced if their treatment had not changed is identified by the outcome evolution of stayers with the same period-one treatment
 - E.g. If a unit's treatment changes from two to five, we can recover its counterfactual outcome evolution if its treatment had not changed, by using the average outcome evolution of all stayers with a baseline treatment of two

Target Parameter: the ASOS

• δ_1 : Average Slope of Switchers: ASOS

$$\delta_1 := E\left(\frac{Y_2(D_2) - Y_2(D_1)}{D_2 - D_1} \middle| S = 1\right)$$

- Average effect across switchers of moving their *D* from period-one to period-two value, scaled by difference between these two values
- Local effect
 - Applies to switchers
 - Measures effect of moving their treatment from its period-one to period-two value, not of other manipulations of their treatment
- But ASOS can be used to identify (resp. bound) effect of other treatment changes if potential outcomes linear (resp. concave/convex)

Support Condition for ASOS Identification

• Standard support condition for matching estimators: no value of the period-one treatment such that only switchers have this value

$$0 < P(S = 1)$$
, and almost surely, $P(S = 1|D_1) < 1$

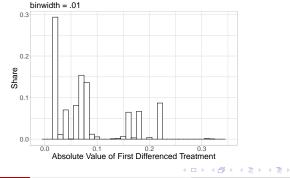
- Implies P(S = 0) > 0: while we assume D_1 and D_2 continuous, we also assume that treatment persistent
- $\Rightarrow D_2 D_1$ has a mixed distribution with mass point at zero

No Quasi-stayers

• Switchers' treatment changes by at least c in absolute value

$$\exists c > 0 : P(|D_2 - D_1| > c|S = 1) = 1$$

 \Rightarrow Holds in Fajgelbaum et al. (2020): tariffs increases decided by Trump administration ≥ 1.5 pp:



э

ASOS Identification w/o Quasi-stayers

• Switchers' treatment effects identified by comparing their outcome evolution to that of stayers with same period-one treatment

$$\delta_1 = E\left(\frac{Y_2 - Y_1 - E(Y_2 - Y_1|D_1, S = 0)}{D_2 - D_1} \middle| S = 1\right)$$

イロト イボト イヨト イヨ

ASOS estimation w/o quasi-stayers

- With iid sample $(Y_{g,1}, Y_{g,2}, D_{g,1}, D_{g,2})_{1 \le g \le G}$, $E\left(\frac{\Delta Y E(\Delta Y|D_1, S=0)}{\Delta D} \middle| S = 1\right)$ can be estimated in three steps:
 - **(**) Estimate non-parametric regression of ΔY_g on $D_{g,1}$ among stayers
 - ⁽²⁾ Compute $\hat{E}(\Delta Y|D_{g,1}, S = 0)$, predicted outcome evolution given baseline treatment according to non-parametric regression, for all switchers

In Finally,

$$\widehat{\delta}_1 := \frac{1}{G_s} \sum_{g: |\Delta D_g| > 0} \frac{\Delta Y_g - \widehat{E}(\Delta Y | D_{g,1}, S = 0)}{\Delta D_g}.$$

One can show that $\hat{\delta}_1$ is \sqrt{G} - consistent, and $\sqrt{G}(\hat{\delta}_1 - \delta_1)$ converges towards normal distribution whose variance can be consistently estimated

Bobba, Flabbi and Levy (IER, 2022)

イロト イヨト イヨト イヨト

Labor Market Search, Informality, and Schooling Investments

- An equilibrium search model where:
 - Search frictions generate mobility between formal and informal jobs
 - Match productivity and bargaining generate overlapping wage distributions
 - $\Rightarrow\,$ Both ingredients generates a mix of formal and informal jobs in equilibrium
- One long-term "cost of informality": Under-investment in education
 - Same features that create informality may also distort returns to schooling
 - $\Rightarrow\,$ Trade-off between welfare in the labor market and pre-market HK

Context: Labor Markets in Latin America

- More than half of the labor force is in the informal sector
 - Workers not contributing to and not covered by the social security system
 - \Rightarrow Informal employees and (most of the) self-employed
- One in the segmented or a competitive labor market
 - Individuals transit back and forth between formal and informal jobs
 - Wage/productivity distributions overlap
 - Mix of formality status within the same firm
- Informal workers gained access to non-contributory social programs

The Model Environment

• Timing

- Schooling decision
- ② Searching status decision
- Section 2 Construction 2 Construc
- Labor Market States
 - Unemployed
 - Self-employed
 - Informal Employee
 - Formal Employee

-

• • • • • • • • • • •

Schooling Decision

- Irrevocable decision about schooling level $h \in \{0,1\}$
- Individual-specific heterogeneity
 - costs $\kappa \sim T(\kappa)$
 - $\bullet\,$ opportunity cost PDV of participating in LMK as h=0
- \Rightarrow Only agents with $\kappa < \kappa^{\star}(y)$ will acquire h = 1
 - All labor market parameters are allowed to be schooling-specific

Searching-status Decision

- Irrevocable decision $s \in \{0, 1\}$:
 - Self-employed (s = 1)
 - Unemployed (s = 0)
- Search for a job in both states but receive offers at different rates: $\gamma_h < \lambda_h$
- Self-employment income $y \sim R(y|h)$
- $\Rightarrow~{\rm Only}~{\rm agents}~{\rm with}~y\geq y^{\star}(h)$ search while also working as self-employed

イロト イヨト イヨト イヨト

Labor Market Dynamics

State	PDV	Shock	Flow Utility
Workers:			
Unemployed	U(h)	λ_h	$\xi_h + \beta_{0,h} B_0$
Self-Employed	S(y,h)	γ_h	$y + eta_{0,h} B_0$
Informal Employee	$E_0[w, y, h]$	η_h, χ_h	$w_0(x;y,h) + \beta_{0,h}B_0$
Formal Employee	$E_1[w, y, h]$	η_h, χ_h	$w_1(x;y,h) + \beta_{1,h}B_1[w_1(x;y,h)]$
Firms:			
Vacancy	V[h]	ζ_h	$ u_h$
Filled Informal Job	$F_0[x,y,h]$	η_h, χ_h	$x-w_0(x;y,h)$
Filled Formal Job	$F_1[x, y, h]$	η_h, χ_h	$x - (1+t)w_1(x; y, h)$

• Match-specific productivity: $x \sim G(x|h)$

- One-shot penalty for firms hiring illegally: $c_h w_0(x; y, h)$
- Matching function determines $\{\lambda_h, \gamma_h, \zeta_h\}$: $m_h = (u_h + \psi_h s_h)^{\iota_h} (v_h)^{1-\iota_h}$

Matteo Bobba (TSE)

э

A D A A B A A B A A B A

Labor Market Institutions and Wage Determination

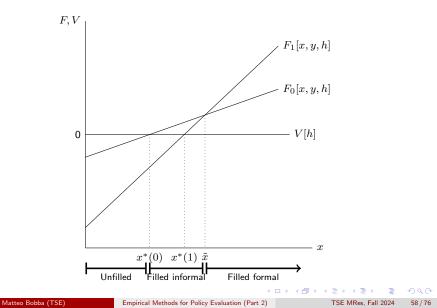
- Non-wage workers' flow value:
 - formal employee $= \beta_{1,h}B_1[w_1(x;y,h)] = \beta_{1,h}[\tau t w_1(x;y,h) + b_1]$
 - informal employee $= \beta_{0,h} B_0$
 - \Rightarrow b_1 introduces redistribution within and between schooling levels.
- Nash-bargaining wage schedules (under free-entry of firms) are:

$$w_0(x; y, h) = \frac{\alpha_h}{1 + \chi_h c_h} x + (1 - \alpha_h) [\rho Q(y, h) - \beta_{0,h} B_0]$$

$$w_1(x; y, h) = \frac{\alpha_h}{1 + t} x + \frac{(1 - \alpha_h)}{1 + \beta_{1,h} \tau t} [\rho Q(y, h) - \beta_{1,h} b_1]$$

where: $Q(y,h) \equiv \max\{S(y,h), U(h)\}$

Equilibrium Representation



Empirical Implications

- Main stylized facts of informal labor markets are replicated in equilibrium:
 - A mixture of formal and informal jobs is realized
 - Formal employees have on average higher wages than informal employees. But their accepted wage distributions overlap
 - **③** Informal employees and self-employed have different labor market dynamics
 - Some firms hire formal or informal workers at different points in time just as workers transit over time between different formality status

Data Sources

Mexico's Labor Force Survey (ENOE): Year 2005

- Nonagricultural, full-time, male, private-sector, secondary-school workers between the ages of 25 and 55 who reside in urban areas
- $w \equiv$ Hourly wages as employee, main job after labor contributions
- $y \equiv$ Hourly labor income as self-employed, without paid employees
- f = 1 if employee is contributing to the social-security fund; = 0 otherwise
- h = 1 if Upper secondary completed = 0 if Lower secondary completed
- Aggregate labor shares for Mexico in 2005
 - Total compensations per employee as percentage of GDP
- Vacancy rates for 2005
 - Good coverage of vacancy posting in urban areas
 - Detailed information on the schooling level required for the job

Identification: Search, Matching, and Bargaining Parameters

- G(x|h): Has to be "recoverable" (Flinn and Heckman, 1982)
 - We assume lognormal with parameters $\{\mu_{x,h}, \sigma_{x,h}\}$
- $\lambda_h, \gamma_h, \eta_h$: stationarity + optimal decision rules identify mobility rates from
 - Transitions
 - Steady state distributions over labor market states
- ρ, ξ_h : Use Q(y, h) to obtain their joint identification
- Nash Bargaining coefficient: $\alpha_1 = \alpha_0 = \alpha$
 - Use labor shares (the ratio between the aggregate value of worker's wages $w_f(x; y, h)$ and the aggregate value of production x)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Identification: Matching Function and Demand Side Parameters

• $\{\psi_h, \iota_h\}$: use vacancy rate and define mkt tightness $\omega_h \equiv \frac{v_h}{u_h + \psi_h s_h}$, so that:

$$\psi_h = \frac{\gamma_h}{\lambda_h}$$
$$\iota_h = \frac{\ln \omega_h - \ln \lambda_h}{\ln \omega_h}$$

• Then, we can back out the demand side parameters:

• $\zeta_h = \omega_h^{-\iota_h}$

• ν_h : use firm's value function and impose free entry

< □ > < □ > < □ > < □ > < □ >

Identification: Informality Parameters (β_1 and c_h)

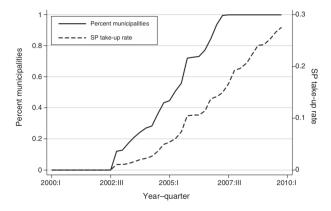
- Different transition rates out of formal jobs and informal jobs identify χ_h
- Overlap between formal and informal accepted wage distributions

$$w_0(\tilde{x}(y,h);y,h) - w_1(\tilde{x}(y,h);y,h) > 0$$

- \Rightarrow Given x, formal employees receive lower net wages than informal employees because they receive higher non-wage benefits
- \Rightarrow Changes in β_1 and c_h generate different shape in the accepted wage distribution of formal and informal employees
- Variation in y is useful variation to separately identify the parameters

Identification: Informality Parameters (β_0)

- The identification of β_0 requires the use of additional information
 - We exploit staggered entry of the Seguro Popular (SP) program in 2005



 \Rightarrow In terms of our model, SP $\approx \uparrow$ in B_0 by 25%

Identification: Informality Parameters (β_0 , cont'd)

- Variation in B_0 identify β_0 if uncorrelated with changes in model primitives
 - $\Rightarrow\,$ Labor market outcomes pre-policy seem balanced

	Hourly Wages (log)			La	Labor Market Proportions		
	Formal	Informal	Self	Formal	Informal	Self	Unempl
					0.005		
SP in 2005 $(1=yes)$	-0.041	0.048	-0.035	-0.034	0.035	-0.004	0.003
	(0.036)	(0.055)	(0.062)	(0.026)	(0.019)	(0.014)	(0.006)
Complete Sec. (1=yes)	0.218	0.288	0.092	0.061	-0.036	-0.029	0.003
,	(0.017)	(0.032)	(0.033)	(0.011)	(0.008)	(0.008)	(0.003)
Number of Obs.	7865	5474	2777	16458	16458	16458	16458

Identification: Self-employment and Schooling Parameters

- R(y|h): Identified by observed self-employment earnings, once we assume a recoverable primitive distribution
 - We assume lognormal with parameters $\{\mu_{y,h},\sigma_{y,h}\}$
- $T(\kappa)$: The threshold crossing decision rule allows for the identification of one parameter from the proportions of individuals in the two schooling levels

$$\frac{1}{n}\sum_{i=1}^{n}h_i = \int_y T(\kappa^*(y))dR(y|0)$$

 $\Rightarrow\,$ We assume a negative exponential with parameters δ

Identification: Unobserved Ability Types

 Type is known to the individual but unobserved in the data. We denote each type with k and its proportion in the population with π_k.

$$\begin{aligned} x|k &= a_k^G x\\ y|k &= a_k^R y\\ \kappa|k &= a_k^T \kappa \end{aligned}$$

- Duration dependence in unemployment identifies these parameters
 - Hazard rates at three and six months for both schooling levels

• Assume: K = 2

- type k = 1 normalized to $a_1^T = a_1^R = a_1^G = 1$
- type k=2 exhibiting $a_2^T<1; a_2^R>1; a_2^G>1$

Estimation in Two Steps

• For $s \in \{0,1\}$ and SP $\in \{0,1\}$, we match the following moments

- Proportions of individuals in each labor market state
- Accepted wage distributions of formal and informal employees
 - \Rightarrow Mean and SD: overall and by quintiles
 - \Rightarrow Overlap: % of formal empl. for each quintile of the informal wage distribution
- Accepted earnings distributions of self-employed
 - \Rightarrow Mean and SD
- Transitions between LMK states (yearly)
- Hazard rates out of unemployment (at 3 and 6 months)
- Labor Shares

Stimate demand-side parameters using vacancy rates

Parameter Estimates (selected coeffs)

Low Schooling $h = 0$		High Schooling: $h = 1$		
Coeff.	Std. Error	Coeff.	Std. Error	

Search, Matching, and Bargaining					
λ_h	0.4679	0.0035	0.5167	0.0098	
γ_h	0.0349	0.0042	0.0306	0.0014	
η_h	0.0326	0.0007	0.0190	0.0052	
$\mu_{x,h}$	2.7616	0.0367	2.6749	0.0382	
$\sigma_{x,h}$	0.6243	0.0132	0.7970	0.0038	
$\mu_{y,h}$	1.6718	0.0188	1.9497	0.0763	
$\sigma_{y,h}$	0.7754	0.0028	0.8027	0.0258	
ξ_h	-103.46	1.6661	-158.05	4.6038	
α	0.5630	0.0169	0.5630	0.0169	
Preferences and Informality					
$\beta_{1,h}$	0.7949	0.0044	0.6091	0.0043	
$\beta_{0,h}$	0.9862	0.0038	0.9807	0.0015	
χ_h	0.0079	0.0004	0.0113	0.0008	
c_h	12.882	0.7045	16.574	1.3932	
Matching Function and Demand Side					
ψ_h	0.0745	0.0088	0.0592	0.0034	
ι_h	0.7321	0.0253	0.7281	0.0184	
ζ_h	7.9718	1.6278	5.8569	0.8742	

Matteo	Bobba	(TSE)

-773.80

111.34

288.80

-496.01

 ν_h

Returns to Schooling

	Ability:	Low	High
		k = 1	k = 2
PDV of Labor Market Searc	ch:		
$\int_{y} Q(y,h) dR(y h)$		0.309	0.278
3			
Average Accepted Wages:			
$\overline{F: E_h \left[w_1 \mid \tilde{x}(y,h) \le x \right]}$		0.479	0.435
I: $E_h[w_0 \mid x_0^*(y,h) \le x < x$	$\check{x}(y,h)]$	0.281	0.296
Average Offered Wages:			
$\overline{F: E_h \left[w_1 \mid y < y^*(h) \right]}$		0.213	0.210
$F: E_h \left[w_1 \mid y \ge y^*(h) \right]$		0.213	0.204
I: $E_h [w_0 \mid y < y^*(h)]$		0.133	0.134
I: $E_h[w_0 \mid y \ge y^*(h)]$		0.142	0.136

э

▶ < ∃ >

A B > 4
 A
 B > 4
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

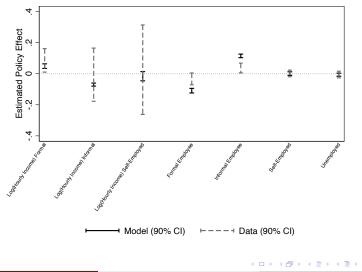
Out-of-Sample Model Validation

• Estimate the effect of $\uparrow B_0$ using SP roll-out one year later (2006)

$$y_{i,q} = \theta d_{m(i),q} + \vartheta h_i + \varrho_{m(i)} + \varphi_q + \epsilon_{i,q}$$

- Predict change in LMK outcomes with B_0^{2006} using estimated model
- Estimate TWFE/DID specifications on both actual and simulated data

Out-of-Sample Model Validation

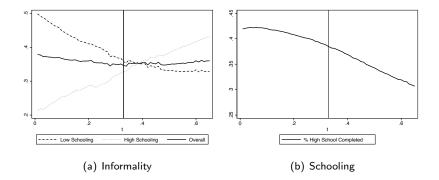


Counterfactual 1: The Equilibrium Effects of Informality

Model:	Firms can only offer a formal contract				
Specifications:	Baseline	Exogenous	Exogenous	Hosios-like	
	Model	Schooling	Contact Rates	Condition ($\alpha = \iota$)	
Flow Welfare:					
Total	-0.0596	-0.0750	-0.0020	0.0478	
Workers	-0.0460	-0.0599	0.0166	0.0570	
Firms	-0.2821	-0.3219	-0.3055	-0.1589	
Labor Market Proportions:					
Unemployed	0.0213	0.0636	0.0019	-0.0459	
Self-employed	0.3353	0.3526	0.3625	0.2329	
Formal Employees	0.0275	-0.0146	-0.0376	0.0076	
Schooling Outcomes:					
% HS Completed	0.1029	-	0.0781	0.1501	
% High Ability in HS	0.0538	_	0.0569	0.0628	

NOTE: Relative changes wrt the benchmark model. Hosios increases α from 0.56 to 0.73.

Counterfactual 2: Changes in Payroll Tax Rate (t)



- Composition effects over schooling/ability explain no impact on informality
- Balanced-budget policy with au=0
 ightarrow 10% increase in high-school completion

• • • • • • • • • • •

Main Takeways from the Estimated Model

- Returns to schooling are substantial
- Informality is welfare improving but:
 - Significantly more so for firms than workers
 - Reduces human capital accumulation (hold-up problem)
- Payroll tax rate has a non-intuitive impact on equilibrium outcomes
 - Informality rate not a good indicator for policy
 - Redistributive forces within the formal system are key

Wrapping Up

- Relevant institutional features are included in the model in a tractable way
- These parameters are hard to separately identify using labor market data
- The staggered roll-out of the policy provides additional variation to:
 - \Rightarrow Identify the (average) valuation of non-contributory benefits
 - $\Rightarrow\,$ Validate the model on a different time period by simulating one-step ahead