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Part 2: Econometrics of RCTs

1 The basic framework
Potential outcomes and SUTVA (IR, Ch 1)
Assignment mechanisms and randomization designs (IR, Ch 3,4)

2 Statistical analysis of experiments
Completely randomized experiments (IR Ch 5,7)
Stratified randomized experiments (IR Ch 9)
Pairwise randomized experiments (IR Ch 10 & AI Section 6.2)
Clustered randomized experiments (AI Section 8)
Two-step randomized experiments
Adaptive randomized experiments
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Potential outcomes and SUTVA
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

Causal Inference as a Missing Data Problem

Population of units, indexed by i = 1, ...., N

Treatment indicator Wi taking values 0 and 1
For each unit i ∈ {1, ...., N} there is one realized (and possibly observed)
outcome and one missing potential outcome

Y obs
i = Yi(Wi) =

{
Yi(0) if Wi = 0

Yi(1) if Wi = 1

Y miss
i = Yi(1−Wi) =

{
Yi(1) if Wi = 0

Yi(0) if Wi = 1

⇒ Unit-level causal effect Yi(1)− Yi(0) is unobserved
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

Causal Inference as a Missing Data Problem

Invert the relations above and characterize the potential outcomes in terms of
the observed and missing outcomes

Yi(0) =

{
Y miss
i if Wi = 1

Y obs
i if Wi = 0

Yi(1) =

{
Y miss
i if Wi = 0

Y obs
i if Wi = 1

⇒ If we impute the missing outcomes, we know all the potential outcomes and
thus the value of any causal estimand in the population of N units

Matteo Bobba (TSE) RCTs and Policy Evaluation M2 PPD/ERNA/EEE, Winter 2025 3 / 114



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Part 2: Econometrics of RCTs Potential outcomes and SUTVA

Potential Vs. Observed Outcomes: An Example

E(Yi(1)− Yi(0)) > 0, while E(Y obs | Wi = 1)− E(Y obs | Wi = 0) < 0

⇒ In order to draw valid causal inferences, we must consider why some units
received one treatment rather than another, i.e. the assignment mechanism
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

The Stable Unit Treatment Value Assumption (SUTVA)

Recall that unit-level causal effect Yi(1)− Yi(0) is unobserved, hence there is
a need for observing multiple units to be able to conduct causal inference

To do so, we need the following assumption:

The potential outcomes for any unit do not vary with the treatments as-
signed to other units, and, for each unit, there are no different forms or
versions of each treatment level, which lead to different potential out-
comes.

Matteo Bobba (TSE) RCTs and Policy Evaluation M2 PPD/ERNA/EEE, Winter 2025 5 / 114



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Part 2: Econometrics of RCTs Potential outcomes and SUTVA

Two Parts of SUTVA

1 No interference. Example of possible violations include:
Fertilizer in one plot may affect yields in contiguous plots
Immunization efficacy may depend on the number of people immunized
Prob(job) after training may be affected by the number of people trained

2 No hidden variations of treatments. Example of possible violations include:
Different efficacies of treatments
Differences in the method of administering the treatment
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

SUTVA: No interference

Denote W−i = (Wj)j ̸=i as the treatment status of all other observations in
the sample or the population except i

The no interference part of SUTVA requires that

W−i ⊥⊥ (Yi(1), Yi(0)) (SUTVA)

⇒ For all y1, y0 and w:

Pr(Yi(1) ≤ y1, Yi(0) ≤ y0,W−i = w) =

Pr(Yi(1) ≤ y1, Yi(0) ≤ y0) Pr(W−i = w)
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

SUTVA: Scale invariance

The second component of SUTVA requires that an individual receiving a
specific treatment level cannot receive different forms of that treatment

Imagine two versions of treatment: W = {0, 1, 2}

The scale invariance part of SUTVA requires that

1 Either Yi(1) = Yi(2)

2 Or

{Yi(1) |i = 1, ....,M}
{Yi(2) |i = M + 1, ..., N}
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

The Role of Covariates

To estimate the causal effect for any particular unit, we will generally need to
predict, or impute, the missing potential outcome

The presence of unit-specific background attributes that are unaffected by
the treatment (Xi) can help making these predictions

1 Test assumptions about the assignment mechanism
2 Increase estimatesâ�� precision by explaining some of the variation in outcomes
3 Causal effect of the treatment on sub-groups (as defined by one or more

covariates) in the population of interest
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

Testing Covariance Balance

Randomization implies that

Wi ⊥⊥ (Yi(0), Yi(1),Xi) (RCT)

Hence, the distribution of covariates should be the same under both
treatment and control

E(Xi | Wi = 1) ≈ E(Xi | Wi = 0), ∀Xi ∈ Xi

A useful implication is that Wi is not predictable by Xi

E(Wi | Xi) = E(Wi)

⇒ Both conditions are testable (e.g. the latter implies that the R2
adj, or the joint

F -test, of a regression of W on Xi is close to zero)
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

Improving Precision

Lets assume that the conditional expectation function (CEF) is linear:

E(Yi | Wi,Xi) = α+ βWi + γ′Xi, E(Xi) = 0

The parameter of interest is the ATE:

β = E(Yi(1)− Yi(0))

=︸︷︷︸
(RCT)

E(Yi | Wi = 1)− E(Yi | Wi = 0)

The inclusion of covariates Xi does not matter for the causal interpretation
of β even if the regression function is incorrectly specified

⇒ This is because Wi ⊥⊥ Xi, even though in finite sample this correlation may
differ from zero
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

Improving Precision (contâ��d)

The Variance of the ATE is

Vx =
σ2
Y |W,X

N∑
i=1

(Wi −W )2

If σ2
Y |W,X < σ2

Y |W , then covariates increase precision of the ATE estimator
at the cost of loosing (exact) unbiasedness in finite sample

⇒ Improvement in precision is not guaranteed in general and critically hinges on
the linearity assumption
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Part 2: Econometrics of RCTs Potential outcomes and SUTVA

Heterogenous Treatment Effects

Lets consider the interactive linear regression model

E(Yi | Wi,Xi) = α+ βWi + δ′XiWi + γ′Xi, E(Xi) = 0

The Conditional Average Treatment Effect (CATE) is

β + δ(X) = E(Yi(1) | Xi)− E(Yi(0) | Xi)

=︸︷︷︸
(RCT)

E(Yi | Wi = 1,Xi)− E(Yi | Wi = 0,Xi)

The vector δ(X) describes the deviation of CATE from the ATE, β

⇒ The interactive approach always delivers improvements in precision for
estimating β even if the linearity in the CEF does not hold
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Assignment Mechanisms and Randomization Designs
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Assignment Mechanism

Given a population of N units, the assignment mechanism is a function
P (W|X,Y(0),Y(1)) ∈ [0, 1] such that∑

W∈{0,1}N

P (W|X,Y(0),Y(1)) = 1

P (W|Y(0),Y(1)) is the probability that a particular value for the joint
assignment will occur (out of 2N possible assignment vectors)

⇒ Some assignment vectors W may have zero probability
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Assignment Probability and Propensity Score

The unit-level assignment probability is:

pi(X,Y(0),Y(1)) =
∑

W:Wi=1

P (W|X,Y(0),Y(1))

The propensity score at x is the average unit assignment probability for units
with Xi = x

e(x) =
1

N(x)

∑
i:Xi=x

pi(X,Y(0),Y(1))

N(x) =
∑

i:Xi=x

1Xi=x

⇒ For values x with N(x) = 0, the propensity score is defined to be zero
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Restrictions on the Assignment Mechanism

1 Individualistic: requires the dependence of the treatment assignment for unit
i to exclusively depend on the outcomes and assignment of that unit

pi(X,Y(0),Y(1)) = q(Xi, Yi(0), Yi(1)), q(·) ∈ [0, 1]

2 Probabilistic: requires every unit to have positive probability of being
assigned to treatment level 0 and to treatment level 1

0 < pi(X,Y(0),Y(1)) < 1

3 Unconfounded: requires that it does not depend on potential outcomes

P (W|X,Y(0),Y(1)) = P (W|X,Y′(0),Y′(1)) = P (W|X)
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Restrictions on the Assignment Mechanism (cont’d)

The combination of individualistic and unconfounded assignment implies that
the assignment mechanism is the product of the propensity score

P (X,Y(0),Y(1)) = c ·
N∏
i=1

q(Xi)
Wi(1− q(Xi))

1−Wi

The constant c ensures that the probabilities add to unity

The propensity score can also be interpreted as the unit-level assignment
probability: e(x) = pi(x) = q(x)

⇒ An assignment mechanism that satisfies the three restrictions is called
regular assignment mechanism
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Randomized Experiments and Observational Studies

A regular assignment mechanism in which the functional form of the
treatment assignment is known corresponds to a randomized experiment

An assignment mechanism corresponds to an observational study if the
functional form of the assignment mechanism is unknown
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Taxonomy of Randomized Experiments: Standard Designs

By positing restrictions on the of the assignment vectors W with positive
probabilities, denoted by W+, we can characterize several randomization
designs

1 Completely randomized experiments

2 Stratified randomized experiments

3 Pairwise randomized experiments
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

A Prelude: Bernoulli Trials (Coin Tossing)

Unit-level probabilities and propensity scores are all equal to 0.5

P (W|X,Y(0),Y(1)) = 0.5N

Here W+ = {0, 1}N

More generally, with probability of assignment to treatment ̸= 0.5

P (W|X,Y(0),Y(1)) = qNt(1− q)Nc

⇒ One disadvantage is that there is is no way to ensure that there “enough”
treated and control units under each assignment
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Completely Randomized Experiments

Given a population of size N , we draw Nt units at random to receive the
treatment, such that 1 ≤ Nt ≤ N − 1

Each unit has probability q = Nt

N to receive the treatment, and the number of
possible assignment vectors is

(
N
Nt

)
A completely randomized experiment has an assignment mechanism satisfying

W+ =

{
W ∈ W |

N∑
i=1

Wi = Nt

}

⇒ Possible issue with covariate unbalancedness after treatment assignment
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Stratified Randomized Experiments

The population of units is first partitioned into blocks or strata Bi = B(Xi)

Within each block, we conduct a completely randomized experiment, with
assignments independent across blocks

A stratified randomized experiment with J blocks is a classical randomized
experiment with an assignment mechanism satisfying

W+ =

W ∈ W |
N∑

i:Bi=j

Wi = Nt(j)

 .

⇒ Randomizing within the strata will lead to more precise inferences by
eliminating the possibility that all or most units of a certain type, as defined
by the blocks, are assigned to the same level of the treatment
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Pairwise Randomized Experiments

It is an extreme version of stratified experiments in which there are as many
units as treatments within each block

A paired randomized experiment is a stratified randomized experiment with
N(j) = 2 and Nt(j) = 1 for j = 1, ..., N/2, so that

W+ =

W ∈ W |
N∑

i:Bi=j

Wi = 1

 .

⇒ Useful design when N is small and/or J is large
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Number of Possible Values for the Assignment Vector
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Taxonomy of Randomized Experiments: Non-standard
Designs

These experimental designs have become popular in recent years

4 Clustered randomized experiments

5 Two-step randomized experiments

6 Adaptive randomized experiments
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Clustered Randomized Experiments

As in the case of stratified experiments, clusters are defined by partitioning
the covariate space Gig = G(Xi)

W g =
∑

i:Gig=1
Wi

Ng
∈ {0, 1} is the average value of Wi for units in cluster g

A clustered randomized experiment is a completely randomized experiment in
which the assignment mechanisms concerns groups of units (clusters)

W+ =

{
W ∈ W |

G∑
g=1

W g = Gt

}

⇒ This design may be motivated by concerns that there are local interactions
between units
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Two-step Randomized Experiments

Define clusters as before Gig = G(Xi)

Potential outcomes vary by both own treatment and local saturation:
Yi(Wi,g, Sg)

Randomly assign each cluster to a treatment saturation, Sg =
∑

i∈g Wi,g

Randomly assign each individual to a treatment status Wi,g = {0, 1}
according to the assigned treatment saturation Sg

⇒ This design is aimed at measuring local spillovers/equilibrium effects
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Adaptive Randomized Experiments

In an adaptive experiment, we begin with an initial treatment assignment on
a small wave of data

Repeated cross-sections t = 1, ...., T , covariates Xit sample sizes Nt

Treatment assignment in wave t depend on earlier outcomes

Rely on algorithms designed to maximize participant outcomes, by shifting to
the best performing options at the right speed

⇒ This design potentially detect the best-performing experimental arm(s) more
efficiently than a static design (i.e., with fewer data-collection sessions and
fewer subjects)
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Part 2: Econometrics of RCTs Assignment Mechanisms and Randomization Designs

Statistical Analysis of Experiments

For each randomization design, we consider two complementary approaches:

1 Fisher’s exact p-values (aka randomization inference)
Does not rely on a model specified in terms of a set of unknown parameters
Potential outcomes are fixed and the treatment assignments are the source of
randomness
The assignment mechanism determines the distribution of the test statistics

2 Asymptotic inference
(linear) Regression models for the conditional mean of observed outcomes
Random sampling from a population of units generates variation in observed
outcomes and the distribution of the test statistics
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Randomization Inference: A Simple Example
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Randomization Inference: A Simple Example (cont’d)

The p-value for the sharp null hypothesis that the treatment had no effect on
coughing outcomes is

H0 : Yi(0) = Yi(1) ∀i = 1, ..., 6.

⇒ Under the null hypothesis, all the missing values in potential outcomes can be
inferred from the observed outcomes

Yi(0) = Yi(1) = Y obs
i

The test statistics is

T (W,Yobs) =| Y obs
t − Y

obs
c |

=| (Y obs
1 + Y obs

2 + Y obs
3 )/3− (Y obs

4 + Y obs
5 + Y obs

6 )/3 |
=| 8/3− 5/3 |= 1.00
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Randomization Inference: A Simple Example (cont’d)

Under the null hypothesis, we can calculate the value of the test statistic
under each of the

(
6
3

)
= 20 permutations of the vector of treatment

assignments, W

E.g. instead of Wobs = (1, 1, 1, 0, 0, 0) take W̃ = (0, 1, 1, 0, 0, 1)

The value of the test statistic may change

T (W̃,Yobs) =| (Y obs
2 + Y obs

3 + Y obs
6 )/3− (Y obs

1 + Y obs
4 + Y obs

5 )/3 |
=| 6/3− 7/3 |= 0.33
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Randomization Inference: A Simple Example (cont’d)

Matteo Bobba (TSE) RCTs and Policy Evaluation M2 PPD/ERNA/EEE, Winter 2025 33 / 114



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Part 2: Econometrics of RCTs Completely Randomized Experiments

Randomization Inference: A Simple Example (cont’d)

Under random assignment, each assignment vector has prior probability 1/20
and so we can compute the exact distribution of the test statistic

⇒ How unusual or extreme is T (W,Yobs) assuming the null hypothesis is true?
How likely it is to observe a test statistic that is at least as large as the one
actually observed?
There are sixteen assignment vectors with at least a difference in absolute
value of 1.00
This corresponds to a p-value of 16/20=0.80

Under the null hypothesis of no treatment effect, the observed difference in
average outcomes could be due to chance
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Part 2: Econometrics of RCTs Completely Randomized Experiments

The Choice of the Null Hypothesis

Fisher’s sharp null hypothesis is different from the null hypothesis that the
average effect of the treatment is zero

⇒ The average treatment effect may be zero even when for some units the
treatment effect is positive, as long as for some others the effect is negative

This does not imply that the average null hypothesis is less relevant

Fisher’s approach can accommodate other sharp null hypotheses. An obvious
alternative is

H0 : Yi(1) = Yi(0) + Ci ∀i = 1, ..., N

⇒ We will focus on the sharp null hypothesis of no effect whatsoever,
Yi(1) = Yi(0), which implies that Y mis

i = Y obs
i
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Part 2: Econometrics of RCTs Completely Randomized Experiments

The Choice of Statistic

Test-statistic is any scalar function T (W,Yobs,X) used to find a p-value

Not all test statistics have the same ability to distinguish between the null
and an interesting alternative hypothesis

A test statistic is said to have power against alternatives if it takes values
that are unusually large when the null hypothesis is false

The validity of this approach hinges on using one statistic (better if specified
before seeing the data) and its p-value only
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Part 2: Econometrics of RCTs Completely Randomized Experiments

The Choice of Statistic (cont’d)

1 Absolute values of the difference in average outcomes

T dif =| Yt
obs − Yc

obs |=
∣∣∣∣
∑

i:Wi=1 Y
obs
i

Nt
−
∑

i:Wi=0 Y
obs
i

Nc

∣∣∣∣
⇒ Works well when alternative hypothesis corresponds to an additive treatment

effect and distributions of Yi(0) and Yi(1) have few outliers

2 Log transform of T dif

T log =

∣∣∣∣
∑

i:Wi=1 ln(Y
obs
i )

Nt
−
∑

i:Wi=0 ln(Y
obs
i )

Nc

∣∣∣∣
⇒ Works well when alternative hypothesis corresponds to a multiplicative

treatment effect and distributions of Yi(0) and Yi(1) are skewed
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Part 2: Econometrics of RCTs Completely Randomized Experiments

The Choice of Statistic (cont’d)

3 Quantiles
Tmedian =| medt(Y

obs
i )− medc(Y

obs
i ) |

⇒ More robust to outliers

4 T-Statistics

T t-stat =

∣∣∣∣ Yt
obs − Yc

obs√
σ2
c/Nc + σ2

t /Nt

∣∣∣∣
⇒ Randomization-t: Conventional t-stat for testing null of equal means is used

here to obtain an exact distribution under the null given potential outcomes
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Part 2: Econometrics of RCTs Completely Randomized Experiments

The Choice of Statistic (cont’d)

5 Rank Statistic

T rank =| Rt −Rc |=
∣∣∣∣
∑

i:Wi=1 Ri

Nt
−
∑

i:Wi=0 Ri

Nc

∣∣∣∣
⇒ The rank of unit i is defined as the number of units with an observed

outcome less than or equal to Y obs
i

6 The Kolmogorov-Smirnov Statistic

T ks = max
i=1,...,N

| F̂t(Y
obs
i )− F̂c(Y

obs
i ) |

⇒ F̂t(Y
obs
i ) = 1/Nt

∑
i:Wi=1 1Y obs≤y⋆ and F̂c(Y

obs
i ) = 1/Nc

∑
i:Wi=0 1Y obs≤y⋆
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Computation of p-values

The p-value calculations of the previous example (N = 6) have been exact
Recall that the number of distinct values of the treatment vector is

(
Nc+Nt

Nt

)
For instance, if N = 100 and q = 0.5 then dim(W+) = e29

We thus need to rely on numerical approximations to calculate the p-value
Draw an N -dimensional vector with Nc zeros and Nt ones from W+

Repeat this process K − 1 times and approximate the p-value by:

p̂ =
1

K

K∑
k=1

1T dif,k≥T dif,obs

⇒ With K > 1, 000 each assignment vector has a similar probability of being
drawn with or without replacement
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Computation of p-values (cont’d)
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Choosing a Test Statistic: A Simple Simulation Exercise

Additive model: Yi(0) ∼ N(0, 1) and Yi(1) = Yi(0) + τ ∼ N(τ, 1)

Additive model with outliers: Yi(0) + Ui, with P (Ui = 0) = 0.8 and
P (Ui = 5) = 0.2

N = 2000, with Nt = 1000 and Nc = 1000

Repeatedly draw random samples and approximate the corresponding
p-values by simulation

Power of the tests for each test statistic is the proportion of p-values less
than or equal to 0.10

You will do this in the TD class
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Choosing a Test Statistic: A Simple Simulation Exercise
(cont’d)
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Linear Regression with No Covariates

Y obs
i = α+ τWi + ϵi

OLS solves

(τ̂ ols, α̂ols) = argmin

N∑
i=1

(Y obs
i − α− τWi)

2

Which gives

τ̂ ols =

∑N
i=1(Wi −W )(Y obs

i − Y
obs

)∑N
i=1(Wi −W )2

α̂ols = Y
obs − τ̂ olsW

Hence
τ̂ ols = Y

obs
t − Y

obs
c
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Linear Regression: Inference

Assuming constant treatment effect τ = Yi(1)− Yi(0) ∀i, the estimated
variance of the OLS residuals is

σ̂2
Y |W =

1

N − 2

N∑
i=1

ϵ̂2i =
1

N − 2

N∑
i=1

(Y obs
i − Ŷ obs

i )2

The estimator for the variance of τ ols is

V̂homosk =
σ̂2
Y |W

N∑
i=1

(Wi −W )2
= σ̂2

Y |W

{
1

Nt
+

1

Nc

}

Where we have used the fact that σ2
Y |W = σ2

t = σ2
c (homoskedasticity)
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Linear Regression: Inference

In many cases, the homoskedasticity assumption will not be warranted, and
one may wish to use an estimator for the sampling variance of τ̂OLS that
allows for heteroskedasticity

V̂robust =

N∑
i=1

ϵ̂2i ·
(
Wi −W

)2
(

N∑
i=1

(Wi −W )2
)2 =

σ̂2
t

Nt
+

σ̂2
c

Nc

where

σ̂2
t =

1

Nt − 1

∑
i:Wi=1

(Y obs
i − Ŷ obs

t )2

σ̂2
c =

1

Nc − 1

∑
i:Wi=0

(Y obs
i − Ŷ obs

c )2
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Linear Regression with Covariates

Y obs
i = α+ τWi +Xiβ + ϵi

Sampling variance of τ ols

V̂ homosk
X =

σ̂2
Y |W,X

N∑
i=1

(Wi − W̄ )2
= σ̂2

Y |W,X

{
1

Nt
+

1

Nc

}

V̂ robust
X =

N∑
i=1

ϵ̂2X,i ·
(
Wi −W

)2
(

N∑
i=1

(Wi −W )2
)2
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Part 2: Econometrics of RCTs Completely Randomized Experiments

An Aside on Heteroskedasticity-Robust Corrections
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Testing for Treatment Effects

Y obs
i = α+ τWi +Xiβ +Wi(Xi −X)γ + ϵi

1 Zero average treatment effect

H0 : E[Yi(1)− Yi(0) | Xi = x] = 0,∀x

Qzero =
(
τ̂ols

γ̂ols
)′
V̂ −1
τ,γ

(
τ̂ols

γ̂ols
)

2 Constant average treatment effect

H0 : E[Yi(1)− Yi(0) | Xi = x] = τ, ∀x

Qconst =
(
γ̂ols)′ V̂ −1

γ γ̂ols
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Testing for Treatment Effects: An Example
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Sample Code: Complete Randomization

set seed 123456
gen random = uniform()
sort random
gen treat = 0
replace treat = 1 if _n <= _N/2

reg y treat x, vce(hc3)

ritest treat _b[treat], reps(1000) seed(125):
reg y treat x, vce(hc3)

ritest treat _b[treat]/_se[treat], reps(1000) seed(125):
reg y treat x, vce(hc3)
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Part 2: Econometrics of RCTs Completely Randomized Experiments

Sample Code: Multiple Treatments

sort random
gen treatment = 0
replace treatment = 1 if _n <= _N/4
replace treatment = 2 if _n > _N/4 & _n <= _N/2
replace treatment = 3 if _n > _N/2 & _n<= _N*3/4
ta treatment, generate(treat)

reg y i.(1 2 3)treat, vce(hc3)
test treat1=treat2

ritest treat _b[1.treat]/_se[1.treat], reps(1000) seed(125):
reg y i.(1 2 3)treat, vce(hc3)

ritest treat (_b[2.treat]/_se[2.treat]-_b[1.treat]/_se[1.treat]),
reps(1000) seed(125): reg y i.(1 2 3)treat, vce(hc3)
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

What’s the Point of Stratification?

Units are grouped together according to some pre-treatment characteristics
into strata

The stratification rules out substantial imbalances in the covariate
distributions in the two treatment groups that could arise by chance in a
completely randomized experiment

Within each stratum, a completely randomized experiment is conducted

⇒ The interest is not about hypotheses or treatment effects within a single
stratum, but rather it is about hypotheses and treatment effects across all
strata
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

The Benefits of Stratification

Consider a case with one covariate Gi ∈ {f,m}, with p(Gi = f) = p

Completely randomized design: Nt = qN and Nc = (1− q)N :

τ̂dif = Y
obs
t − Y

obs
c

V(τ̂dif) =
σ2
t

Nt
+

σ2
c

Nc
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

The Benefits of Stratification

Stratified design, two subsamples:
1 Nt(f) = pqN and Nc(f) = p(1− q)N

2 Nt(m) = (1− p)qN and Nc(m) = (1− p)(1− q)N

τ̂ strat = pτ̂(f) + (1− p)τ̂(m)

V(τ̂ strat) =
p

N

(
σ2
t (f)

p
+

σ2
c (f)

1− p

)
+

1− p

N

(
σ2
t (m)

p
+

σ2
c (m)

1− p

)
⇒ The difference in the two variances is

V(τ̂dif)− V(τ̂ strat) =
p(1− p)

N
((µc(f)− µc(m))2 + (µt(f)− µt(m))2) ≥ 0
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

An Alternative to Stratification: Re-randomization

What if after the random draw some (important) covariates are unbalanced?

Randomize many times and select the draw that achieves better balance
E.g. pick the draw with the minimum maximum t-stat

Preferred over stratification when one needs to ensure balance among several
variables

Inference is tricky as not every combinations of allocation is ex-post equally
probable

⇒ p-values need to be adjusted for the re-randomization
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Re-randomization: Example

N = 100 individuals, with 50 women and 50 men

Completely randomize 60 individuals to treatment, then reject and
re-randomize many times until we get 30 men and 30 women assigned to
treatment

This is a stratified experiment

⇒ To make correct inference we would need to know the entire sequence of
assignment vectors that led to the final assignment
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

The Structure of Stratified Randomized Experiments

Let J be the number of strata/blocks, and N(j), Nc(j), Nt(j)

Let Gi ∈ {1, ..., J} be the stratum for unit i

Let Bi(j) = 1Gi=j be the stratum indicator for unit i

Within stratum j there are
(
N(j)
Nt(j)

)
possible assignments, so that the

assignment mechanism is

P (W|B,Y(0),Y(1)) =

J∏
j=1

(
N(j)

Nt(j)

)−1

for W ∈ W+

⇒ W+ = {W ∈ W |
∑N

i=1 Bi(j) ·Wi = Nt(j) for j = 1, ...., J}
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Example: Tennessee Project Star
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Randomization Inference for Stratified Experiments

Let us focus on the sharp null hypothesis that all treatment effects are zero:

H0 : Yi(1) = Yi(0) ∀i = 1, 2, ..., N.

Define average observed outcomes in stratum j as

Y
obs
t (j) =

1

Nt(j)

∑
i:Gi=j

WiY
obs
i

Y
obs
c (j) =

1

Nc(j)

∑
i:Gi=j

(1−Wi)Y
obs
i

⇒ Strata-level average assignment probability (propensity score) is

e(j) =
Nt(j)

N(j)
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Test Statistics

Within-stratum test statistic

T dif(j) =
∣∣Y obs

t (j)− Y
obs
c (j)

∣∣
⇒ Not very informative as we are interested in treatment effects across all strata

Linear combination of the within-stratum statistics

T dif,RSS =

∣∣∣∣ J∑
j=1

Nj

N
(Y

obs
t (j)− Y

obs
c (j))

∣∣∣∣
⇒ Need e(j) = Nt(j)/N(j) to be similar across strata j for the test to have

power
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Tennessee Project Star

Bi(j), i = 1, ...., 68 (class-level data)

Total number of possible assignments of teachers to class type is a very large
number

13 Schools with two classes in each group:
(
4
2

)
= 6

2 Schools with three small classes and two regular classes:
(
5
2

)
= 10

1 School with four small classes and two regular classes:
(
6
2

)
= 15

H0 : Yi(1) = Yi(0) ∀i = 1, 2, ..., 68.

T dif =
∣∣Y obs

t − Y
obs
c

∣∣ = 0.224, with p = 0.034

T dif,RSS =

∣∣∣∣ J∑
j=1

Nj

N (Y
obs
t (j)− Y

obs
c (j))

∣∣∣∣ = 0.241, with p = 0.023
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Linear Regression Methods

Y obs
i = τWi +

J∑
j=1

β(j)Bi(j) + ϵi

Recall that Bi(j) = 1Gi=j is the stratum indicator for unit i

In general τ̂ ols is not a consistent estimator of τ

It estimates a weighted average of the within-stratum average effects

τω =

J∑
j=1

ω(j)τ(j)

J∑
j=1

ω(j)

⇒ ω(j) =
Nj

N
Nt(j)
N(j)

N(j)−Nt(j)
N(j) = q(j)e(j)(1− e(j))

⇒ τ(j) = E[Yi(1)− Yi(0) | Bi(j) = 1]
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Linear Regression: Inference

The estimated variance of the weighted average treatment effect τω is

V̂ strata =

N∑
i=1

ϵ̂2i ·
(
Wi −

∑J
j=1 q(j)Bi(j)

)2
(∑J

j=1 q(j)e(j)(1− e(j))
)2

The weights ω(j) are proportional to the precision of the estimator of the
within-stratum treatment effects

τ̂dif(j) = Y
obs
t (j)− Y

obs
c (j)

Sampling variance of τ̂dif(j) is (σ2/N) · (q(j)e(j)(1− e(j)))
−1
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Linear Regression: Fully-interacted Model

Y obs
i = τWi

Bi(J)

N(J)/N
+

J∑
j=1

β(j)Bi(j) +

J−1∑
j=1

γ(j)Wi

(
Bi(j)−Bi(J)

N(j)

N(J)

)
+ ϵi

In this case OLS converges to the (population-)average treatment effect

τ̂ ols,inter = τ

With estimated asymptotic variance equal to

V̂ strata,inter =
N∑
i=1

q(j)2 ·
(

σ2
c (j)

q(j)(1− e(j))
+

σ2
t (j)

q(j)e(j)

)

⇒ In general, V̂ strata,inter > V̂ strata
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Regression Analysis of the Tennessee Project Star

The point estimate of τ in the standard model is
τ̂ ols = 0.238 (ŝ.e. = 0.103)

If there is variation in the effect of the class size across schools (i.e.
τ(j) ̸= τ(j′) ∀j ̸= j′), then this estimator is not consistent for the average
effect of the treatment in the population

The point estimate of τ in the fully-interacted model is
τ̂ ols,inter = 0.241 (ŝ.e. = 0.095)

⇒ The two estimates for the average effect are close, with similar standard
errors, consistent with limited heterogeneity in the treatment effects across
strata
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Part 2: Econometrics of RCTs Stratified Randomized Experiments

Sample Code: Stratified Randomization

set seed 123456
gen random = uniform()
egen strata=group(x1 x2)
sort strata random
by strata : gen strata_size = _N
by strata : gen strata_index = _n
gen treat = 0
replace treat = 1 if strata_index <= (strata_size/2)

areg y treat, abs(strata_var) vce(hc3)

ritest treat _b[treat]/_se[treat], reps(1000) seed(125)
strata(strata): areg y treat, abs(strata) vce(hc3)
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Pairwise Randomized Experiments
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Basic Notions

Stratified experiments with exactly two units in each stratum

Units are matched to other units based on their similarity in covariates, with
the expectation that this similarity corresponds to similarity in the potential
outcomes under each treatment

⇒ Each stratum has the same proportion of treated units, and so the natural
estimator for the average treatment effect weights each stratum equally
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Example: Children’s Television Workshop Experiment
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

The Structure of Pairwise Randomized Experiments

The number of units, N , is even. The number of strata is J = N/2

There is one treated unit and one control unit in each stratum,
Nt(j) = Nc(j) = 1, and N(j) = 2 for all j = 1, ..., J

Let Gi be the variable indicating the pair, with Gi ∈ {1, ...., N/2}, which is a
function of covariates Xi

Within each pair there are
(
N(j)
Nt(j)

)
=
(
2
1

)
= 2 possible assignments, so the

assignment mechanism is

P (W|G,Y(0),Y(1)) =

N/2∏
j=1

(
N(j)

Nt(j)

)−1

=

N/2∏
j=1

1

2
= 2−N/2, for W ∈ W+

⇒ W+ = {W ∈ W |
∑

i:Gi=j Wi = 1, for j = 1, ...., N/2}

Matteo Bobba (TSE) RCTs and Policy Evaluation M2 PPD/ERNA/EEE, Winter 2025 70 / 114



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Potential Outcomes

For all pairs j, Wj,A = 1−Wj,B and P (Wj,A | Y(0),Y(1),X) = 1/2

⇒ Potential outcomes are

Y obs
j,A =

{
Yj,A(0) if Wj,A = 0

Yj,A(1) if Wj,A = 1

Y obs
j,B =

{
Yj,B(0) if Wj,A = 1

Yj,B(1) if Wj,A = 0
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Estimand

The average treatment effect within pair j is

τpair(j) =
1

2

∑
i:Gi=j

(Yi(1)− Yi(0))

=
1

2
{(Yj,A(1)− Yj,A(0)) + (Yj,B(1)− Yj,B(0))}

⇒ The average treatment effect is

τ =
1

N

N∑
i=1

(Yi(1)− Yi(0))

=
2

N

N/2∑
j=1

τpair(j)
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Randomization Inference

H0 : Yi(1) = Yi(0), ∀i = 1, 2, ..., N.

Usual “absolute difference” statistic across pairs is

T dif =

∣∣∣∣ 1J
J∑

j=1

(Y obs
j,t − Y obs

j,c )

∣∣∣∣
=

∣∣∣∣ 2N
N/2∑
j=1

(Wi,A(Y
obs
j,A − Y obs

j,B )(1−Wi,A)(Y
obs
j,B − Y obs

j,A ))

∣∣∣∣
=
∣∣Y obs

t − Y
obs
c

∣∣
⇒ The associated p-value is different than that calculated under a completely

randomized design due to fewer elements in W+
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Randomization Inference (cont’d)

Alternative statistics include

T rank =
∣∣Rt −Rc

∣∣
=

∣∣∣∣ 2N
N/2∑
j=1

(Wi,A (Rj,A −Rj,B) + (1−Wi,A) (Rj,B −Rj,A))

∣∣∣∣
T rank,pair =

∣∣∣∣ 2N
N/2∑
j=1

(
1Y obs

j,1>Y obs
j,0

− 1Y obs
j,1<Y obs

j,0

) ∣∣∣∣
Both statistics are robust to the presence of outliers in observed outcomes

⇒ When there is substantial variation in outcomes across pairs T rank,pair has
more power than T rank
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Normalized Rank: Children’s Television Example
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Randomization Inference: Children’s Television Example

T dif = 13.4, p-value = 0.031

T rank = 3.8, p-value = 0.031

T rank,pair = 0.5, p-value = 0.145

⇒ T rank,pair is less significant than the other statistics because for the two pairs
where Y obs

j,1 < Y obs
j,0 the difference in outcomes is small
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Regression Methods

Primary outcome of interest is the within-pair difference in observed
outcomes of the treated an the control unit in the pair,

τ̂pair(j) = Y obs
j,1 − Y obs

j,0

Then consider the following (trivial) regression

τ̂pair(j) = τ + ϵj

The standard estimator for the average treatment effect is the simple average
of the within-pair differences:

τ̂ ols =
2

N

N/2∑
j=1

τ̂pair(j)
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Regression Methods: Inference

So far, pairwise design is just a special case of stratified designs

Complications arise when estimating the variance of τ̂pair(j)

Cannot estimate the within-stratum variance, which requires at least two
treated and at least two control units in each stratum

Instead, consider the variance of τ̂pair(j) over the pairs:

V̂ pair =
1

N/2(N/2− 1)

N/2∑
j=1

(
τ̂pair(j)− τ̂

)2
⇒ Typically, V̂ pair < V̂ strata < V̂ ols
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Regression Methods: Adding Covariates

1 Adding covariates as within-pair difference

τ̂pair(j) = τ + β∆X,j + ϵj

Where ∆X,j = (Wj,A · (Xj,A −Xj,B) + (1−Wj,A) · (Xj,B −Xj,A))

2 Adding covariates as within-pair average

τ̂pair(j) = τ + γXj + ϵj

Where Xj = (Xj,A −Xj,B) /2

3 General case
τ̂pair(j) = τ + β∆X,j + γ(Xj −X) + ϵj
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Regression Methods: Example

For the regression model with only a constant

τ̂ ols = 13.4 (ŝ.e. = 4.3)

For the regression function that includes the within-pair difference

τ̂ ols = 9.0 (ŝ.e. = 1.5) and β̂ols = 5.4 (ŝ.e. = 0.6)

For the regression function that includes the within-pair average

τ̂ ols = 13.4 (ŝ.e. = 3.5) and γ̂ols = 3.9 (ŝ.e. = 1.7)

Including both terms

τ̂ ols = 8.5 (ŝ.e. = 1.5), β̂ols = 5.9 (ŝ.e. = 0.8), and γ̂ols = −1.0 (ŝ.e. = 0.7)
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Part 2: Econometrics of RCTs Pairwise Randomized Experiments

Sample Code: Pairwise Randomization

set seed 123456
gen random = uniform()
egen strata=group(x1 x2)
sort strata random
bys strata: gen diff=y[_n]-y[_n-1]
bys strata: gen diff_z=z[_n]-z[_n-1]

collapse diff diff_z (mean) avg_z=z, by(strata)

reg diff, vce(hc3)
reg diff diff_z avg_z, vce(hc3)

ritest treat _b[_cons]/_se[_cons], reps(1000) seed(125)
strata(strata): reg diff diff_z avg_z, vce(hc3)
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Clustered Randomized Experiments
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

What’s the Point of Clustering?

Instead of assigning treatments at the unit level, in this setting the
population is first partitioned into a number of clusters

Then all units in a cluster are assigned to the same treatment level

Given a fixed sample size, this design is in general not as efficient as a
completely randomized design or a stratified randomized design

⇒ There may be interference between units at the unit-level violating SUTVA

⇒ In many cases it is easier to sample units at the cluster level
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Unit-level Vs. Cluster-level

Cluster-level analysis is more transparent and more directly linked to the
randomization framework
⇒ Inference at cluster-level is more precise when there are a few large clusters

and many small clusters (e.g., clusters are geographical units, such as states or
towns)

⇒ Inference at the unit-level is complicated in this case because many units will
be in the same treatment group

Unit-level is more flexible, as it allows to incorporate individual-level
covariates and this may improve efficiency
⇒ When number of units per cluster is similar (e.g., in educational settings where

the clusters are schools or classrooms)
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

The Structure of Clustered Experiments

Let Gig be a binary indicator that unit i belongs to cluster g = 1, ..., G

The number of units in cluster g is Ng =
∑N

i=1 Gig, so that Ng/N is the
share of cluster g in the sample

W g ∈ {0, 1} is the (average) value of the treatment assignment for all units
in cluster g

G is the total number of clusters, with Gt the number of treated cluster and
Gc = G−Gt the number of control clusters
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Example: The Progresa Program

Educational grants to mothers to encourage children’s school attendance

Clustered RCT during the roll-out of the program in rural areas
506 villages among those eligible to receive the program
320 early treatment and 186 late treatment (control)

Rich data collected at the individual/HH level for both eligible and
non-eligible HHs in each village

Approx. 30,000 program eligible children
About 50-100 HHs per village
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Estimands

The choice of estimand depends on the choice of the unit of analysis

For analysis at the unit-level, a natural estimand is the population average
treatment effect

τpop =
1

N

N∑
i=1

(Yi(1)− Yi(0))

For analysis at the cluster-level, we instead consider the (unweighted) average
of the within-cluster average effect

τC =
1

G

G∑
g=1

τg, where τg =
1

Ng

∑
i:Gig=1

(Yi(1)− Yi(0))
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Randomization Inference

The usual statistic for unit-level analysis

T dif =
∣∣Y obs

t − Y
obs
c

∣∣ = ∣∣∣∣
∑

i:Wi=1 Y
obs
i

Nt
−
∑

i:Wi=0 Y
obs
i

Nc

∣∣∣∣
The equivalent statistic for cluster-level analysis

T dif,C =

∣∣∣∣ 1Gt

∑
g:W g=1

Y
obs
g − 1

Gc

∑
g:W g=0

Y
obs
g

∣∣∣∣
As usual, consider all permutations (or a random subset) of the vector W g

and compute associated statistics and p-values accordingly
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Randomization Inference of Progresa

Children-level analysis on school enrollment (pre-program year 1997)

T dif = 0.0075, p-value = 0.400

Children-level analysis on school enrollment (program year 1998)

T dif = 0.0388, p-value < 0.001

Village-level analysis on school enrollment (program year 1998)

T dif,C = 0.0234, p-value = 0.0120
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Regression Methods: Unit-Level

In unit-level analysis, we estimate the following regression

Y obs
i = α+ τWi + ϵi

If sample is made up of randomly selected clusters out of G, then correct
variance is:

V̂cluster =

G∑
g=1

( ∑
i:Gig=1

ϵ̂2i ·
(
Wi −W

)2)
(

N∑
i=1

(Wi −W )2
)2

If instead we observe all the clusters, then use standard V̂robust
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Regression Analysis: Cluster-Level

In cluster-level analysis, consider the following regression

Y
obs
g = α+ τW g + ηg

The estimator of the variance of τ ols is the usual one:

V̂homosk =

∑G
g=1 η̂

2
g∑G

g=1

(
W g −W

)2 = σ̂2

{
1

Gt
+

1

Gc

}
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Regression Analysis of Progresa

Children-level analysis on school enrollment (pre-program year 1997)

τ̂ ols = 0.0075 (ŝ.e. = 0.0091)

Children-level analysis on school enrollment (program year 1998)

τ̂ ols = 0.0388 (ŝ.e. = 0.0104)

Village-level analysis on school enrollment (program year 1998)

τ̂ ols = 0.0234 (ŝ.e. = 0.0092)
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Sample Code: Clustered Randomization

set seed 123456
gen random = uniform()
sort random
gen treat = 0
replace treat = 1 if _n <= _N/2

reg y treatment

merge 1:n cluster_id using “individual data”
reg y treatment, cluster(cluster_id)
ritest treatment _b[treatment], reps(1000) seed(125)
cluster(cluster_id): reg y treatment, cluster(cluster_id)

ritest treatment _b[treatment], reps(1000) seed(125)
cluster(cluster_id): reg y treatment, vce(hc3)
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Embedding Spillovers in Clustered Designs

Choose the appropriate level of randomization so as to prevent interactions
between individuals assigned to different groups
⇒ Relax SUTVA within clusters, but maintain it across clusters

ATE=direct treatment effect+within-cluster spillovers
How can we separate the two?

⇒ Two variants of clustered RCTs to measure spillovers
1 Partial population design
2 Randomized saturation design
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Partial Population Design

Many programs have a clear target population
How do these programs affect untreated people nearby?

Collect data on outcomes and covariates for those sub-populations
E.g. social networks in micro-credit programs

Randomize treatment at a broader level
⇒ Within-cluster (non-random) program assignment mechanism
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Partial Population Design: Estimands

Write potential outcomes as Yi(Wig, Eig), where Eig = {0, 1} is program
eligibility rule

ATE = E(Yi(1, 1)− Yi(0, 1)) =

= E(Yi|Wi = 1, Ei = 1)− E(Yi|Wi = 0, Ei = 1)

ITE = E(Yi(1, 0)− Yi(0, 0)) =

= E(Yi|Wi = 1, Ei = 0)− E(Yi|Wi = 0, Ei = 0)

Both ATE and ITE likely depend on cluster-level treatment saturation
(Sg =

∑
i∈g Ei,g), which is endogenous
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Partial Population Design: Example

Kremer et al. (ReStat, 2009) studied a scholarship program in Kenya
Scholarship awarded to highest scoring 15% girls in six grade at district level
Randomization at the school level
56% of program schools had at least one winner and 5.5 winners on average

⇒ Program raised test scores by for girls (ATE=0.19 SD)

⇒ Positive within-school spillovers on boys (ITE=0.08 SD) and for girls with
low baseline test scores (ITE=0.12-0.13 SD)
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Randomized Saturation Design

A variant of clustered randomization where
1 Assign each cluster to a treatment saturation, Sg =

∑
i∈g Wig ∈ [0, 1)

2 Assign each individual to a treatment status Wig = {0, 1} according to Sg

⇒ This design allows to tease out how potential outcomes vary by both own
treatment and local saturation of treatment

Yi(Wig, Sg)

⇒ Variation in the treatment saturation breaks perfect correlation between the
treatment statuses of individuals in the same cluster
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Randomized Saturation Design: Estimands

Direct and indirect treatment effects

ATE(s) = E(Yi(1, s)− Yi(0, 0)) =

= E(Yi|Wig = 1, Sg = 0)− E(Yi|Wig = 0, Sg = 0)+

+ E(Yi|Wig = 1, Sg = s)− E(Yi|Wig = 1, Sg = 0)

ITE(s) = E(Yi(0, s)− Yi(0, 0)) =

= E(Yi|Wig = 0, Sg = s)− E(Yi|Wig = 0, Sg = 0)

Total Policy Effect

TCE(s) = E(Yi|Sg = s)− E(Yi|Sg = 0) =

= s×ATE(s) + (1− s)× ITE(s)
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Part 2: Econometrics of RCTs Clustered Randomized Experiments

Randomized Saturation Design: Example

General Equilibrium Effects of Cash Transfers (Egger et al., ECMA, 2022)

Randomization Study Area
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

What is an Adaptive Randomized Experiment?

A standard RCT applies the same procedures for allocating treatments
throughout the trial

⇒ An adaptive design may, based on interim analysis of the trial’s result, change
the allocation of subjects to treatment arms

Adaptive designs require multiple periods of treatment and outcome
assessment
⇒ Well suited to survey, on-line, and lab experiments, where participants are

treated and outcomes measured in batches over time
⇒ Some field experiments are conducted in stages (e.g. treatment is to be

deployed over time in a series of different regions)
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Illustrative Example

The goal is to select an optimal website design
The treatments are different color schemes
The outcome is some measure of visitors’ engagement with the website

In a non-adaptive experiment, we assign each visitor to a particular color
scheme and then measure how much she engages with the website

In an adaptive experiment, we begin with an initial treatment assignment on
a small wave of data
⇒ Intermediate results give us some idea of the performance of each arm
⇒ This informs how the next wave of data should be allocated across arms
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Illustrative Example (cont’d)

The fraction of observations (number of users) assigned to each treatment is
set before the experiment starts
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Illustrative Example (cont’d)
⇒ Each wave re-assigns treatment shares based on intermediate results
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Illustrative Example (cont’d)

⇒ We assign the arms that seem more promising more often, according to the
objective we set out
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Setup

Waves t = 1, ...., T , sample sizes Nt

Treatment D ∈ {1, ..., k}, outcomes Y ∈ [0, 1], covariates X

Potential outcomes Y d, and θdx = E[Y d
it |Xit = x]

Repeated cross-sections: (Y 1
it , ....., Y

k
it ;Xit) are i.i.d. across both i and t

Given all information available at time t form posterior beliefs Pt over θ

⇒ Based on beliefs and the objective, decide what share pdxt of stratum x will
be assigned to treatment d in time t
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Thompson Sampling

In each period subjects are assigned to treatment arms in proportion to the
posterior probability that a given arm is best

pdxt = Pt

(
d = argmax

d′
θd

′x

)
Suppose you care about both participant welfare, and precise point
estimates/high power for all treatments

p̃dxt = (1− γ)pdxt + γ/k

⇒ The designer max participant welfare while learning something about the
effectiveness of suboptimal treatments
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Exploration Sampling

Kasy and Sautmann (ECMA, 2021) propose a modification of Thompson
sampling probabilities to make them less aggressive

⇒ Increase the expected value of the arm selected at the end of the experiment

Assigns shares qdt of each wave to treatment d, where

qdt = St · pdt · (1− pdt )

pdt = Pt

(
d = argmax

d′
θd

′
)

St =
1∑

d p
d
t (1− pdt )

⇒ Shifts weight away from best performing treatment to its close competitors

Matteo Bobba (TSE) RCTs and Policy Evaluation M2 PPD/ERNA/EEE, Winter 2025 107 / 114



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Exploration Sampling in Practice

Kasy and Sautmann (2021) design an experiment using exploration sampling
on agricultural extension services for farmers in India

Six treatments to incentivize phone-call completion

Outcome is call completion (1=answer five questions asked during the call)

Daily waves of 600 phone calls randomly selected out of 10,000 valid numbers
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Inference

Inference has to take into account adaptivity. Example:

Flip a fair coin

If head, flip again, else stop

Probability distribution: 50% tail-stop, 25% head-tail, 25% head-head

Expected share of heads?

0.5× 0 + 0.25× 0.5 + 0.25× 1 = 0.375 ̸= 0.5

⇒ Sample averages by treatment arms are, in general, biased
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Randomization inference for Adaptive Designs

Sharp null hypothesis: Y 1
i = .... = Y k

i

Under this null, it is easy to re-simulate the treatment assignment: just let
your assignment algorithm run with the data, switching out the treatments

Do this many times, re-calculate the test statistic each time

Take the 1− α quantile across simulations as critical value

⇒ This delivers finite-sample exact inference for any adaptive assignment
scheme
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

A Simple Illustration

We simulate an RCT involving a control group and eight treatment arms

We administer treatments and outcomes for 100 subjects during each period

The simulation assumes that each subject’s outcome is binary (e.g., good
versus bad)

We allocate next period’s subjects according to posterior probabilities that a
given treatment arm is best

The stopping rule is that the RCT is halted when one arm is found to have a
95% posterior probability of being best
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

A Simple Illustration (cont’d)

The simulation assumes that the probability of success is 0.10 for all arms
except one, which is 0.20
The best arm (the red line) is correctly identified, and the trial is halted after
23 periods (total N=2300)
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

A Simple Illustration (cont’d)

All but one of the arms have a 0.10 probability of success, and the superior
arm has a 0.12 probability of success
The design eventually settles on the truly superior arm but only after more
than 200 periods (N=23,810)
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Part 2: Econometrics of RCTs Adaptive Randomized Experiments

Wrapping Up on Adaptive Design

Funders and implementation partners may welcome the idea of an
experimental design that responds to on-the-ground conditions such that
problematic arms are scaled back

⇒ Even when one arm is clearly superior (inferior), the lead-time necessary to
staff or outfit this arm may make it difficult to scale it up (down)

Adaptive designs add to the complexity of the research design, the
implementation and field work, and the ex-post analysis
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