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Part 3: Design and Implementation Issues

1 Sample size and the power of experiments (AI Section 7 & DGK Section 4)

2 Non-compliance (IR Ch 23,24 & DGK Section 6.2)

3 Spillovers (AI Section 11 & DGK Section 6.3)

4 Attrition and multiple outcomes (DGK Sections 6.4,7.2)
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Sample Size and the Power of Experiments
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Power Calculations for Randomized Experiments

These are intended to be carried out prior to any experiment

The idea is to assess whether or not the proposed experiment has a
reasonable chance of finding effect sizes that one might possibly expect

Two ways of thinking about power calculations
⇒ Find sample size given pre-specified effect size
⇒ Find effect size given pre-specified sample size
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Type I and II Errors
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Notation

The size of the test is the probability of rejecting the null hypothesis when it
is in fact true (false positive)
⇒ P (Type I Error) ≤ α = 0.05

The power of the test is the probability of rejecting the null when it is fact
false (true positive)
⇒ 1− P (Type II Error) ≥ β = 0.80

True average treatment effect is τ = E[Yi(1)− Yi(0)]

Proportion of treated units: γ =
∑

i Wi/N

Conditional variance of outcome is σ2
t = σ2

c = σ2

Matteo Bobba (TSE) RCTs and Policy Evaluation M2 PPD/ERNA/EEE, Winter 2025 4 / 51



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Hypothesis Testing

The parameter of interest in RCTs is the difference in means of outcomes
between a hypothetical population that is treated and a population that is
untreated

H0 : E[Yi(1)− Yi(0)] = 0

Ha : E[Yi(1)− Yi(0)] ̸= 0

We test the null hypothesis by comparing the means of a randomly chosen
sample

T =
Y

obs
t − Y

obs
c√

σ2/Nt + σ2/Nc

Given random sampling, same chances of over or under estimating the “true”
(population) means
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Power Calculations

Under the alternative hypothesis we have that

Y
obs
t − Y

obs
c − τ√

σ2/Nt + σ2/Nc

≈ N (0, 1)

The implied t-statistics is approximately normal

T ≈ N

{
τ√

σ2/Nt + σ2/Nc

, 1

}

We reject the null hypothesis if T > tα

P
{
| T |> Φ−1(1− α/2)

}
≈ Φ

{
−Φ−1(1− α/2) +

τ√
σ2/Nt + σ2/Nc

}
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Power Calculations

We want the rejection probability to be at least β given that the alternative
hypothesis is true, hence

β = Φ

{
−Φ−1(1− α/2) +

τ√
σ2/Nt + σ2/Nc

}

This implies that

Φ−1(β) = −Φ−1(1− α/2) +
τ
√
N
√
γ(1− γ)

σ

The required sample size for a given effect size τ is thus

N =
(Φ−1(β) + Φ−1(1− α/2))2

(τ2/σ2) γ(1− γ)
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Power Calculations: Example

Imagine you are considering the design of an experiment assigning
unemployed individuals into job training

α = 0.05 and β = 0.8

SD of labor earnings is 6000 $

γ = 0.5

τ = 1/6× SD(earnings) =1000 $

N = (Φ−1(0.8)+Φ−1(0.975))2

0.1672·0.52 = 1, 302, with 651 treated and 651 controls

⇒ The larger the MDE the smaller N (e.g. τ =2000 $ implies N = 282)
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Power Calculations under Clustered Randomization
Recall regression model for unit-level analysis

Y obs
i = α+ τW̄g + νj + ωi︸ ︷︷ ︸

ϵi

⇒ νj is common shock at cluster-level, i.i.d across clusters with variance σ2
ν

⇒ ωi is usual error term, i.i.d across individuals with variance σ2
ω

Assume G clusters of equal size Ng = N, ∀g = 1, ..., G. The variance of the
OLS estimator of τ is

Nσ2
ν + σ2

ω

γ(1− γ)NG

Under complete randomization the variance is

σ2
ν + σ2

ω

γ(1− γ)NG
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Power Calculations under Clustered Randomization

Given sample size NG, the loss in precision due to cluster-level vs. unit-level
randomization is

1 + (N − 1)
σ2
ν

σ2
ν + σ2

ω

Trade-off between number of individuals per group and number of groups
which depends on the intra-class correlation ρ = σ2

ν/(σ
2
ν + σ2

ω)

⇒ Precision varies proportionally with number of clusters G

⇒ Nb of obs. per cluster affects precision much less, especially when ρ is large
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Intra-class Correlation: Examples From Education Studies
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Randomized Saturation Designs: Baird et al (ReStat,
2018)

⇒ Power trade-off: choosing the set of saturations and the share of clusters to
assign to each saturation
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Minimum Detectable Effect

1 Use standardized effect sizes

Y
obs
t − Y

obs
c

σ

2 Benchmark with other effect sizes of interventions with similar objectives
E.g. minimum effect size for test scores: 0.2 · SD

3 Assess what effect size would make the program cost effective
The “bang for the buck” (if the program were to be scaled up)
The experiment may be of intrinsic interest irrespective of the policy
implications
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Residual Variance & Intra-Class Correlation

Data collected before the program is implemented
Historical data from the same or a similar population (e.g. HH survey, admin
data, research papers)

⇒ Data from own pilot survey or experiment (baseline survey)

The number of repeated samples (McKenzie, 2012)
The more repeated obs. per individual the lower the residual variance of the
outcome

⇒ Depends on auto-correlation of the outcome variable
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Allocation of Treatment across Units

If no differential cost, MDE is minimized for γ = 0.5

Otherwise, minMDE s.t. N(1− γ)Cc +NγCt ≤ B, which gives

γ

1− γ
=

√
Cc

Ct

Analogously, we can derive an expression for the minimum total cost, C⋆,
required in order to achieve a power of 1− β with a given value of MDE

⇒ With more than one treatment, you may need a larger sample size than for
each treatment separately
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Other Practical Considerations

Imperfect compliance and attrition should be taken into account when
determining the required sample size (see next class)

Use covariates to increase power
Ex-ante: stratified randomization
Ex-post: add control variables
Choosing which variables to control must in principle be specified in advance
to avoid the risk of specification searching
Use statistical criteria to choose covariates (e.g. machine learning tools)
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Sample Code: Power Calcs

sampsi 0 0.1, sd(1) alpha(0.05) power(0.90) ratio(1) pre(0)

sampsi 0 0.1, sd(1) alpha(0.05) n(1000) ratio(1) pre(0)

sampsi 0 0.1, sd(1) alpha(0.05) power(0.90) ratio(1) pre(1)
r01(0.5) method(change)

sampsi 0 0.1, sd(1) alpha(0.05) power(0.90) ratio(1) pre(1)
r01(0.5) method(ancova)
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Sample Code: Power Calcs with Clustering

clustersampsi, mu1(0) mu2(.1) rho(1) alpha(0.05) beta(0.8) m(1)
[replicate sampsi]

clustersampsi, mu1(0) mu2(.1) rho(0.5) alpha(0.05) beta(0.8) m(20)

clustersampsi, mu1(0) mu2(.1) rho(0.5) alpha(0.05) beta(0.8) k(60)
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Part 3: Design and Implementation Issues Sample Size and the Power of Experiments

Sample Code: Power Calcs with Clustering

loneway y id_var
local icc = r(rho)
xtsum y, i(id_var)
local clusters = r(n)
local clustersize = int(_N/`clusters')
clustersampsi, mu1(0) mu2(.1) rho(`icc') k(`clusters')
[too few clusters]
clustersampsi, mu1(0) mu2(.1) rho(`icc') m(`clustersize')
clustersampsi, mu1(`cmean' ) mu2(`tmean') sd1(`sd') sd2(`sd')
rho(`icc') m(`clustersize')
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Non-Compliance
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Part 3: Design and Implementation Issues Non-Compliance

Defining (Non-)Compliance

Some units assigned to treatment may end up not taking the treatment
E.g. don’t enroll in job training

Some units assigned to control may still take the treatment or another
treatment similar to the one under study

E.g. access to other training courses

These are one-sided or two-sided compliance issues
One-sided if it is only possible to drop-out of the treatment
Two-sided if there are both possibilities of dropping-out and getting the
treatment (or a similar one) without being assigned to it
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Part 3: Design and Implementation Issues Non-Compliance

Treatment Assignment and Potential Treatment

Let Zi ∈ {0, 1} be the randomly assigned treatment assignment

Let Wi(z) ∈ {0, 1} denote the potential treatment and W obs
i = Wi(Zi) the

realized value of the treatment

Perfect compliance: Wi(0) = 0,Wi(1) = 1

One-sided non-compliance: Wi(0) = 0,Wi(1) ∈ {0, 1}

Two-sided non-compliance: Wi(0) ∈ {0, 1},Wi(1) ∈ {0, 1}
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Part 3: Design and Implementation Issues Non-Compliance

Potential and Observed Outcomes

Potential outcomes are defined as:

Yi(z, w)

Realized outcomes are, accordingly

Y obs
i = Yi(Zi,Wi(Zi)) =


Yi(0, 0) if Zi = 0,Wi(0) = 0

Yi(0, 1) if Zi = 0,Wi(0) = 1

Yi(1, 0) if Zi = 1,Wi(1) = 0

Yi(1, 1) if Zi = 1,Wi(1) = 1
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Part 3: Design and Implementation Issues Non-Compliance

Naive Estimands

1 As-treated (or blind) analysis, where units are compared by treatment
received, rather than assigned:

τ at =
1

N

N∑
i=1

[Yi(Zi, 1)− Yi(Zi, 0)]

2 Per-protocol (or truncated) analysis, where units who do not comply with
their assigned treatment are simply dropped from the analysis

τpp =
1

Nc

∑
i:Wi(0)=0,Wi(1)=1

[Yi(1, 1)− Yi(0, 0)]
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Part 3: Design and Implementation Issues Non-Compliance

Intention-to-treat (ITT) Analysis

The receipt of the treatment is ignored, and outcomes are compared by the
assignment to the treatment (Z ⊥⊥ {Y (z, w)}(z,w)∈{0,1}2)

τ itt =
1

N

N∑
i=1

[Yi(1,Wi(1))− Yi(0,Wi(0))]

We can estimate τ itt using differences in averages of realized outcomes by
treatment assignment

τ̂ itt = Y
obs
Zi=1 − Y

obs
Zi=0

As usual, τ̂ itt can also be obtained by regressing Y obs
i on Zi and a constant

term
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Part 3: Design and Implementation Issues Non-Compliance

ITT Analysis: Inference

The sampling variance for τ̂ itt is

V̂(τ̂ itt) =
σ̂2
0

N0
+

σ̂2
1

N1

Where:

σ̂2
0 =

1

N0 − 1

∑
i:Zi=0

(
Yi(0,Wi(0))− Y

obs
0

)2

=
1

N0 − 1

∑
i:Zi=0

(
Y obs
i − Y

obs
0

)2

σ̂2
1 =

1

N1 − 1

∑
i:Zi=1

(
Yi(1,Wi(1))− Y

obs
1

)2

=
1

N1 − 1

∑
i:Zi=1

(
Y obs
i − Y

obs
1

)2
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Part 3: Design and Implementation Issues Non-Compliance

ITT Analysis: Example

Y
obs
0 = 0.9956, σ̂2

0 = 0.07972, Y obs
1 = 0.9962, σ̂2

1 = 0.06162

τ̂ itt = 0.0026 and V̂(τ̂ itt) = 0.00092, hence CI0.95(τ itt) = (0.0008, 0.0044)

Matteo Bobba (TSE) RCTs and Policy Evaluation M2 PPD/ERNA/EEE, Winter 2025 26 / 51



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Part 3: Design and Implementation Issues Non-Compliance

ITT Analysis: Drawback

The ITT effect combines partly the direct effect of taking the treatment and
the indirect effect through the assignment

E.g. The biological effect of taking the supplements, and the psychological
effect of assignment to take the supplements on actually taking them

⇒ An ITT analysis may have poor external validity since non-compliance likely
depends on the context

The causal effect of taking the treatment may be more policy-relevant than
the causal effect of assigning individuals to take the treatment
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Part 3: Design and Implementation Issues Non-Compliance

Local Average Treatment Effects (LATE)

An alternative approach is to incorporate non-compliance in the analysis

Consider all the possible patterns of compliance behavior

Ci =


c if Wi(0) = 0,Wi(1) = 1

d if Wi(0) = 1,Wi(1) = 0

a if Wi(0) = 1,Wi(1) = 1

n if Wi(0) = 0,Wi(1) = 0
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Part 3: Design and Implementation Issues Non-Compliance

LATE: Assumptions

A1 Exclusion restriction (no direct effect of the assignment on outcomes)

Yi(z, w) = Yi(z
′, w) = Yi(w),∀z, z′, w.

A2 Monotonicity (no defiers, only for two-sided noncompliance settings)

Wi(1) ≥ Wi(0)

Compliance Status Compliance Status with Monotonicity
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Part 3: Design and Implementation Issues Non-Compliance

LATE: Definition

Under A1-A2 we can identify the ATE for compliers (LATE)

τ late =
1

Nc

∑
i:Wi(0)=0,Wi(1)=1

[Yi(1)− Yi(0)] =

1
N

N∑
i=1

[Yi(Wi(1))− Yi(Wi(0))]

1
N

N∑
i=1

[Wi(1)−Wi(0)]

⇒ This can be consistently estimated in an IV regression of Yi on Wi using Zi

as the excluded instrument (Wald estimator)
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Part 3: Design and Implementation Issues Non-Compliance

LATE: Example

The Vietnam draft lottery: random assignment by drawing the 365 days of
the year in a certain order
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Part 3: Design and Implementation Issues Non-Compliance

LATE: Example (cont’d)

Possible violations of the exclusion restriction
⇒ Never takers: Yi(0, 0) = Yi(1, 0). Dodging the draft if assigned (i.e. by

moving to Canada) will likely involve large differences in later earnings
⇒ Always takers: Yi(0, 1) = Yi(1, 1). If being assigned and accepting means a

different allocation to tasks in the military from what would have happened
when applying voluntarily, this might imply differences in later earnings

⇒ Compliers and defiers: Yi(0, w) = Yi(1, w). The effect on earnings is
attributed to serving in the military and not to the draft

Possible violation of the monotonicity assumption
⇒ Some individuals who would be willing to volunteer if they are not drafted but

would resist the serve if drafted
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Part 3: Design and Implementation Issues Non-Compliance

LATE: Example (cont’d)

τ̂ itt = −0.213 (ŝ.e. = 0.20)

τ̂w = 0.1460 (ŝ.e. = 0.0108)

τ̂ late = τ̂ itt

τ̂w = − 0.21
0.1460 = −1.46 (ŝ.e. = 1.36)
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Part 3: Design and Implementation Issues Non-Compliance

LATE: Summary

The LATE parameter is the average treatment effect for those who have been
moved from being untreated to being treated

E.g. those who would not have served in the military without the draft but
entered because of the assignment

⇒ If exclusion restrictions do not hold, IV-Wald̸=LATE

⇒ If monotonicity does not hold, IV-Wald̸=LATE (IV-Wald measures the
treatment effect for individuals who are moving in and out of the treatment
without distinguishing them)
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Part 3: Design and Implementation Issues Spillovers

Taxonomy of Spillovers

1 Externalities
Physical: e.g. disease transmission in health applications
Behavioral: e.g. peer effects (learning, imitation, social norms, etc)

2 Equilibrium effects
Local: e.g. displacement effects in job training programs
Global: e.g. college tuition policies and returns to college
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Part 3: Design and Implementation Issues Spillovers

Spatial Spillovers in Standard RCT Designs

Miguel and Kremer (2004) proposed a way to estimate the size and
geographic scope of spillovers

Yi = α+ β1Wi + β2N
W
d,i + β3Nd,i + ϵi

NW
d,i: number of units assigned to treatment at distance d from unit i

Nd,i: total number of units at distance d from unit i

β1: ATE

β2NW
d,i: average spillover effect at distance d from unit i

⇒ This works under specific circumstances (local spillovers and experimental
sample sufficiently “dense’’)
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Part 3: Design and Implementation Issues Spillovers

Example: Spatial Spillovers in Progresa

Bobba and Gignoux (2019) finds evidence of cross-village spillovers that
operate within treated villages

Geographic Locations of Progresa Villages Program Spillovers across Villages
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Part 3: Design and Implementation Issues Attrition

Sample Attrition

Attrition occurs when outcomes cannot be measured for some study
participants who were part of the original sample

1 Individuals drop-out of the program and/or cannot be found (e.g.
out-migration, death, etc)

2 Participants refuse to be interviewed or refuse to answer some of the questions

⇒ Non-random attrition can undermine the comparability of the treatment and
control group (selection bias)

This may occur even when attrition rates are similar in treat and control

Random attrition reduces sample size, reducing statistical power
Factor-in expected attrition rate when performing ex-ante power calculations
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Part 3: Design and Implementation Issues Attrition

Attrition Ex ante

Avoid resentments of the control group
Enlarge the unit of the randomization (e.g. village/municipality)

Data collection strategies to track participants over time
Pilot data collection and procedures
If participants drop-out, go find them at home (e.g., the Balsakhi program)
Collect tracking info in the survey
Intensive follow-up for a random sub-sample of the attritors

Matteo Bobba (TSE) RCTs and Policy Evaluation M2 PPD/ERNA/EEE, Winter 2025 39 / 51



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Part 3: Design and Implementation Issues Attrition

Attrition Ex Post

Compare attrition rates across treatment and control groups
Compare baseline characteristics of attritors Vs. non-attritors

If attrition is non-random then use treatment-effect bounds
Lee (2009) bounds rest on random assignment of treatment and monotonicity
(treatment assignment can only affect attrition in one direction)
Trim lower or upper tails of distribution of outcome in treatment group by the
differential attrition rate (share of non-attriters is equal in both groups)
Calculating group differences in mean outcome yields the lower and the upper
bound for the treatment effect depending on the direction of the attrition bias
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Part 3: Design and Implementation Issues Attrition

Attrition Ex Post: Lee Bounds

Share of observations with observed outcome by group

qT =
∑

i 1(Wi=1,Si=1)∑
i 1(Wi=1)

qC =
∑

i 1(Wi=0,Si=1)∑
i 1(Wi=0)

Consider the case qT > qC . Then

q =
qT − qc

qT

and (1− q) determine the quantiles at which the distribution of Y in the
treatment group are trimmed
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Part 3: Design and Implementation Issues Attrition

Attrition Ex Post: Lee Bounds (cont’d)

The marginal (cutoff) values of Y that enter the trimmed means are

yTq = G−1
Y |W=1,S=1(q)

yT1−q = G−1
Y |W=1,S=1(1− q)

The upper bound and the lower bound are

θ̂upper =

∑
i 1(Wi = 1, Si = 1, Yi ≥ yTq )Yi∑
i 1(Wi = 1, Si = 1, Yi ≥ yTq )

−
∑

i 1(Wi = 0, Si = 1)Yi∑
i 1(Wi = 0, Si = 1)

θ̂lower =

∑
i 1(Wi = 1, Si = 1, Yi ≤ yT1−q)Yi∑
i 1(Wi = 1, Si = 1, Yi ≤ yT1−q)

−
∑

i 1(Wi = 0, Si = 1)Yi∑
i 1(Wi = 0, Si = 1)
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Part 3: Design and Implementation Issues Attrition

Attrition Ex Post: Lee Bounds (cont’d)

Covariates that are determined before treatment can be used to tighten
treatment-effect bounds

Covariates that have some explanatory power for attrition Si ∈ {0, 1} are
used to split the sample into cells

Bounds are separately calculated for each cell

A weighted average of cells’ bounds is computed

Lee (2009) shows that such averaged bounds are tighter than those that do
not use any covariates
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Part 3: Design and Implementation Issues Attrition

Attrition: Example

Kremer et al. (2009) study a merit-based scholarship program in Kenya

Figure: % of students in follow-up sample by baseline test score

Lee bounds of the treatment effect in Teso district are very wide, ranging
from -0.17 to 0.23
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Multiple Hypothesis Testing
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Part 3: Design and Implementation Issues Multiple Hypothesis Testing

Beware of False Positives

Different null hypotheses arise naturally for at least three reasons:
1 When there are multiple outcomes of interest
2 When the effect of a treatment may be heterogeneous across subgroups
3 When there are multiple treatments of interest

Standard inference considers each outcome separately

⇒ Multiple hypotheses lead to over-rejection of H0 (no effect)
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Part 3: Design and Implementation Issues Multiple Hypothesis Testing

False Positives: Example

Consider testing M null hypotheses simultaneously

For each null hypothesis there is p-value ∼ U(0, 1) when H0 is true

If all null hypothesis are true and that the p-values are independent, the
probability of one or more false rejections is

P (Type I Error) = 1− (1− α)M

⇒ This tends to one rapidly as M increases. E.g (α = 0.05):
P (Type I | M = 5) = 0.226, P (Type I | M = 10) = 0.401, and
P (Type I | M = 100) = 0.994
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Part 3: Design and Implementation Issues Multiple Hypothesis Testing

How can we Avoid False Positives Due to Multiple
Hypothesis?

1 Select one indicator in advance to be the primary outcome (PAP)

2 Collapse many indicators using an index

3 Directly adjust p-values by the number of tests we undertake
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Part 3: Design and Implementation Issues Multiple Hypothesis Testing

Summary Indexes

A summary index is a weighted mean of several standardized outcomes

The weights are calculated to maximize the amount of information captured
in the index

⇒ GLS-weighting procedure ensures that outcomes that are highly correlated
receive less weight, while outcomes that are uncorrelated receive more weight

1 For all outcomes, switch signs where necessary so that positive direction
always indicates a “better” outcome

2 Demean all outcomes and convert them to effect sizes by dividing each
outcome by its control group standard deviation

3 Define J groupings of outcomes (domains). Each outcome ỹjk is assigned to
one of these J areas (Kj outcomes in each domain j)

4 Create an index that is weighted average of ỹjk for individual i in area j

weighted by the inverse of the covariance matrix of the transformed outcomes
in area j
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Part 3: Design and Implementation Issues Multiple Hypothesis Testing

Adjust P -Values: Family-Wise Error Rate

Suppose that a family of M hypotheses, H1,H2, ..., HM , is tested, of which
J are true (J ≤ M)

FWER is the probability that at least one of the J true hypotheses in the
family is rejected

Bonferroni correction: p×M

Westfall and Young (1993) step-down procedure:
1 Sort outcomes y1, ..., yM by increasing p-value
2 Simulate the data under null hypothesis of no treatment effect
3 Calculate p⋆1, ..., p

⋆
M

4 Enforce original monotonicity: p⋆⋆r = min{p⋆r , p⋆r+1, ..., p
⋆
M}, where r denotes

the original significance rank of the outcome
5 Repeat (2)-(4) L times and record number of times Sr that p⋆⋆r < pr
6 Compute pfwer

r = Sr/L
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Part 3: Design and Implementation Issues Multiple Hypothesis Testing

FWER-Adjusted P -Values: Example
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Part 3: Design and Implementation Issues Multiple Hypothesis Testing

Adjust P -Values: False Discovery rate

FWER adjustment limits the probability of making any type I error

We may be willing to tolerate some type I errors in exchange for greater
power (FWER adjustments become increasingly severe as the number of tests
grows)

Alternative is to control for FDR, or the expected proportion of rejections
that are type I errors

Define V as the number of false rejections, and t = V + U as the total
number of rejections

FWER is P (V > 0), FDR is E[Q = V/t]

⇒ FDR requires less stringent p-value adjustments than FWER
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