Empirical Methods for Policy Evaluation Second Part

Matteo Bobba

Toulouse School of Economics (TSE)

TSE PhD Program (MRes) Fall 2024

<ロト <回ト < 注ト < 注ト = 注

Outline and Readings for this Class

- Ex-ante policy evaluation
 - Chapter 2 in Wolpin's book (MIT press, 2013)
- Ombining causal inference and model-based analyses
 - Todd and Wolpin (JEL, 2023)

< □ > < 同 > < 回 > < 回 >

Ex-ante policy evaluation

イロン イロン イヨン イヨン

Causal Inference Approach (only ex-post)

• Binary random variable $D_i=\{0,1\}$ and potential outcomes $(Y_i^1,Y_i^0),$ such that $Y_i=(1-D_i)Y_i^0+D_iY_i^1$

$$\begin{split} ATE &= \mathbb{E}(Y_i^1 - Y_i^0) \\ &= \mathbb{E}(Y_i^1 | D_i = 1) - \mathbb{E}(Y_i^0 | D_i = 0) \\ &= \underbrace{\mathbb{E}(Y_i^1 - Y_i^0 | D_i = 1)}_{\text{ATT}} + \underbrace{\mathbb{E}(Y_i^0 | D_i = 1) - \mathbb{E}(Y_i^0 | D_i = 0)}_{\text{Selection bias}} \end{split}$$

• Research designs attempt to kill selection bias by means of identification assumptions. E.g.:

RCT SUTVA

- Diff-in-Diff Parallel trends + SUTVA
 - IV-LATE First-stage + exclusion restriction + Monotonicity + SUTVA
 - RD Continuity (Sharp RD) + IV-LATE assumptions (Fuzzy RD) + SUTVA

Model-Based Approach (both ex-ante and ex-post)

- Lay out an economic model of the phenomenon being studied
- ② Addition of a stochastic structure if the model itself does not possess one
- A consideration of the identification of the "primitive" model parameters given the data, model, and estimator employed
- parametric: Show that two sets of parameters yielding the same likelihood value are necessarily equal
- non-param: Show that the distribution of observables picks only one set of parameters irrespectively of the stochastic assumption on the distribution of unobservables
 - Adaptation of an estimation technique given the nature of the model and the data at hand
 - Given estimates of primitive parameters, empirical comparative statics exercises and/or counterfactual policy experiments

Ex-ante Policy Evaluation

- Economic models allow predicting the effects of public policies **before they are implemented** and/or variants of existing policies
 - Improve program design to maximize impacts given costs
 - Inform program targeting by identifying sub-populations for which impacts are highest
 - Analyze program impacts over a time horizon that exceeds the length of time observed in the data
 - Analyze program impacts in the presence of spillover or general equilibrium effects

An Example

- Many governments have adopted conditional cash transfer (CCT) programs as a way to alleviate poverty and stimulate human capital investments
 - Provide cash transfers to HHs conditional on school attendance of children
- Can we evaluate those programs before they are implemented?
 - Yes, with a model of schooling decisions in which the transfer decreases schooling costs

< ロ > < 同 > < 回 > < 回 >

The Progresa Program in Mexico

• Large scale anti-poverty program

- Began in 1997 in rural areas and rapidly expanded throughout the country
- About 20% of Mexican families participating
- Provides educational grants to mothers to encourage children's school attendance (among other things...)
 - Benefits levels increase with grades attained, higher for girls
 - Subsidies amount to about 20% of average annual income
- Data from the initial rural evaluation of the program
 - Randomized phase-in design at the village level

< ロ > < 同 > < 回 > < 回 >

Economic Model

• Consider the following static optimization problem for the household

$$\max_{s \in \{0,1\}} U(c,s) \text{ s.t. } \begin{cases} c = y + w(1-s) \\ c = y + w(1-s) + \tau s \end{cases}$$

• Optimal schooling choices without and with the subsidy:

$$s^{\star} = g(y, w)$$
$$s^{\star\star} = g(\tilde{y}, \tilde{w})$$

•
$$ilde{y} = y + au$$
 and $ilde{w} = w - au$

• The impact of the subsidy is equivalent to a (income-compensated) reduction in child wages

< □ > < 同 > < 回 > < 回 >

Bringing the Model to the Data

• Add observables and unobservables preference shifters

 $U(c, s, X, \epsilon)$

• Unobserved heterogeneity is not systematically related to wages and income

$$f(\epsilon|y, w, X) = f(\epsilon|X)$$
 (CIA)

< □ > < 同 > < 回 > < 回 >

• Given CIA, variations in wages and income identify the impact of the program

Non-Parametric Estimation

• Ex-ante average treatment effect is:

$$\hat{\Delta}_{np} = \frac{1}{N} \sum_{j=1}^{N} \left[\underbrace{\hat{\mathbb{E}}(s_i | w_i = w_j - \tau_j, y_i = y_j + \tau_j, X_i)}_{\text{Predicted schooling under the program}} - \underbrace{s_j(w_j, y_j, X_j)}_{\text{Observed schooling}} \right]$$

- $\mathbb{E}(s_i|w_i = w_j \tau_j, y_i = y_j + \tau_j, X_i)$ can be estimated by nonparametric regression (kernel, local linear regression or series estimation)
- Need common support in the data: i.e. set of families with X_i for which the values $w_j \tau$ and $y_j + \tau$ lie within the observed support of w_i and y_i

Counterfactual Subsidy Levels

	- · ·		•		
		Boys			
Ages	2* Original	Original	0.75*Original		
12-13	0.04	0.01	0.003		
	(59%)	(87%)	(98%)		
14-15	0.24	0.01	0.05		
	(45%)	(83%)	(98%)		
12-15	0.12	0.06	0.02		
	(53%)	(86%)	(98%)		
		Girls			
	2* Original	Original	0.75*Original		
12-13	0.06	0.06	0.05		
	(48%)	(91%)	(98%)		
14-15	0.23	0.07	0.03		
	(51%)	(89%)	(98%)		
12-15	0.14	0.06	0.05		
	(50%)	(90%)	(98%)		
		Boys and Girls			
	2* Original	Original	0.75*Original		
12-13	0.05	0.04*	0.03		
	(54%)	(89%)	(98%)		
14-15	0.23	0.09	0.04		
	(48%)	(86%)	(98%)		
12-15	0.13	0.06	0.03		
	(52%)	(88%)	(98%)		

[†] Bandwidth equals 200 pesos. Trimming implemented

using the 2% quantile of positive density values as the cut-off point.

э

< □ > < □ > < □ > < □ > < □ >

Unconditional Income Grant

		Boys				
Ages	Predicted	Sample-Sizes‡	% overlapping support			
12-13	-0.02 (0.03)	374, 610	89%			
14-15	-0.06 (0.05)	309, 569	90%			
12-15	-0.04 (0.03)	683, 1179	89%			
		Girls				
	Predicted	Sample-Sizes‡	% overlapping support			
12-13	-0.03 (0.04)	361, 589	88%			
14-15	0.00 (0.05)	316, 591	88%			
12-15	-0.02 (0.03)	677, 1180	88%			
		Boys and Girls				
	Predicted	Sample-Sizes‡	% overlapping support			
12-13	-0.03 (0.03)	735, 1199	88%			
14-15	-0.03 (0.03)	625, 1160	89%			
12-15	-0.03 (0.02)	1360, 2359	89%			

[†]Standard errors based on 500 bootstrap replications. Bandwidth equals 200 pesos. Trimming implemented using the 2% quantile of positive density values as the cut-off point.

*The first number refers to the total control sample and the second to the subset of controls that satisfy the PROGRESA eligibility criteria.

Adding Home Production

• Suppose that now we modify the model to allow for an alternative use of children's time, home production $l \in \{0,1\}$

$$\max_{(s,l)} U(c,l,s) \text{ s.t. } \begin{cases} c = y + w(1-s-l) \\ c = y + w(1-s-l) + \tau s \end{cases}$$

• Optimal schooling choices without and with the subsidy are different

$$s^{\star} = g(y, w)$$
$$s^{\star \star} = h(\tilde{y}, \tilde{w}, \tau)$$

- Non-parametric ex-ante approach is not feasible
- Which policy restores the equivalence between the schooling demand functions?

< ロ > < 同 > < 回 > < 回)

Parametric Approach

• Consider the following functional form for the utility function under the original problem (for simplicity, no child leisure and no X)

$$U(C,s;\epsilon) = C + \alpha s + \beta C s + \epsilon s, \ \epsilon \sim N(0,\sigma_{\epsilon}^2)$$

• The probability of school attendance under the subsidy is

$$P(s=1) = 1 - \Phi\left(\frac{(w-\tau) - \alpha - \beta(y+\tau)}{\sigma_{\epsilon}}\right)$$

• Model parameters can be estimated by ML from data with no subsidy ($\tau = 0$) given the same sources of variation mentioned in the non-parametric case

Parametric Approach

 \bullet Given parameter estimates, the effect of introducing a subsidy of τ on the attendance rate can be calculated from

$$\hat{\Delta}_p = \Phi\left(\frac{(w-\tau) - \hat{\alpha} - \hat{\beta}(y+\tau)}{\hat{\sigma}_{\epsilon}}\right) - \Phi\left(\frac{w - \hat{\alpha} - \hat{\beta}y}{\hat{\sigma}_{\epsilon}}\right)$$

- $\bullet\,$ Unlike the non-parametric case, there is no condition on the support of $y+\tau$ and $w-\tau$
- Functional forms and distributional assumptions substantially decrease the computational burden (curse of dimensionality) in solving/estimating structural models

Wrapping Up on Ex-Ante Policy Evaluation

- Estimating the effect of a new policy does not necessarily require specifying the complete structure of the model governing decisions
- Nonparametric ex ante policy evaluation may be feasible even when there is no variation in the data in the policy instrument (here, the price of schooling)
- If not feasible, one needs to impose extra-assumptions on the distribution of observed and unobserved heterogeneity

< ロ > < 同 > < 回 > < 回 >

Combining Causal Inference and Model-Based Approaches

イロト イヨト イヨト イヨ

Out of Sample Validation

- Concerns about the plausibility of the model assumptions undermine the credibility of its predictions
 - Within-sample goodness-of-fit tests provide useful but not necessarily compelling evidence of the validity of the model
- The reliability of the model's predictions is better assessed in terms of **out-of-sample fit**
 - Estimate a model by holding out the treatment/control group, and then validate its predictions about program impacts

< □ > < 同 > < 回 > < 回 >

Out of Sample Validation – Todd and Wolpin (2006)

		Boys					
Ages	Experimental	Predicted	Sample-Sizes‡	% overlapping support			
12-13	0.05** (0.02)	0.01 (0.03)	374, 10	87%			
14-15	0.02 (0.03)	0.01* (0.04)	309. 569	83%			
12-15	0.03 (0.02)	0.06 (0.03)**	683, 1179	86%			
		Girls					
	Experimental	Predicted	Sample-Sizes‡	% overlapping support			
12-13	0.07 (0.07)	0.06* (0.03)	361, 589	91%			
14-15	0.11** (0.04)	0.07 (0.05)	316, 589	89%			
12-15	0.09 ** (0.02)	0.06** (0.03)	677, 1180	90%			
		Boys and Girls					
	Experimental	Predicted	Sample-Sizes‡	% overlapping support			
12-13	0.06** (0.02)	0.04* (0.02)	735, 1199	89%			
14-15	0.07**	0.09** (0.04)	625, 1160	86%			
12-15	0.06** (0.02)	0.06** (0.02)	1360, 2359	88%			

†Standard errors based on 500 bootstrap replications. Bandwidth equals 200 pesos. Trimming implemented using the 2% quantile of positive density values as the cut-off point.

*The first number refers to the total control sample and the second to the subset of controls that satisfy the PROGRESA eligibility criteria.

Identification and Estimation

- One can directly use the source of variation induced by the program for **estimation** of the model parameters
 - Estimate a model on both treatment and control groups that relaxes some behavioral/distributional assumptions
- In the previous model, the impact of the subsidy on schooling is assumed equivalent to a decrease in child wages
 - Transfers are actually handed out to the mother, while we do not know who receives the child's wage
 - Who receives the money likely matters

< □ > < 同 > < 回 > < 回 >

Identification and Estimation – Attanasio et al (2012)

• Consider the alternative model:

$$U^s - U^w = \alpha + (\beta^s - \beta^w)Y + \theta^s \tau - \theta^w w$$

- Previous model assumes income pooling conditional on schooling (θ^s = β^s and θ^w = β^w)
- By estimating on the control group only, $\tau = 0$ we impose that the transfer and the wage have the same effect on schooling decision ($\theta^s = \theta^w$)
- Estimating the model on both treated and control villages enables to identify both θ^s (through variations in transfer) and θ^w (through variation in child wages)

イロト 不得 トイヨト イヨト 二日

Validation Vs. Identification?

- Should one have stronger belief in the predictions of the counterfactual experiments from Todd and Wolpin (2006) as opposed to Attanasio et al (2012) because the former was externally validated?
 - Attanasio et al (2012) may be more credible for being parsimonious, and yet more general!
- It is difficult to account for all the possible behavioral responses in a model estimated off the control group only
 - Use all the data at your disposal

Practical Considerations for Bridging the two Approaches

- Show your data/variation with descriptive analysis
- **②** Use the design-based analysis to provide preliminary evidence
- Olearly articulate the value-added of the model
- Use the design-based analysis to guide modeling choices and identification
- Ochoose parameters of interest and counterfactuals that are directly informed by the variation in the data

< ロ > < 同 > < 回 > < 回 >